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ABSTRACT
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological
activities. In response to activation, they signal via downstream effector proteins to induce dynamic
alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational
modifications, mechanisms of dysregulation identified in human pathological conditions, and the
ways that Rho GTPases might be targeted for chemotherapy will be discussed.
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Introduction

The Rho GTPases were initially discovered on the basis
of their homology to the Ras GTPases,1 and they were
quickly discovered to have significant effects on cell mor-
phology and actin cytoskeleton organization. RhoA acti-
vation leads to the formation of filamentous actin (F-
actin) bundles called stress fibers,2,3 Rac1 promotes the
generation of F-actin-rich lamellipodia,4 while CDC42
induces the extension of bundled F-actin projections
called filopodia5,6 (Fig. 1). Since their initial discovery
over 30 years ago, Rho GTPases have emerged as criti-
cally important and central regulators of the signaling
pathways that influence the actomyosin cytoskeleton in
processes including adhesion, migration and cell divi-
sion,7-9 as well as proliferation, differentiation and gene
transcription.10-12 This review will focus on the Rho pro-
teins themselves, including recent findings regarding
their post-translational modifications, and how this
knowledge informs our understanding of disease-associ-
ated mutations and contributes to small molecule inhibi-
tor development.

The Rho GTPase family

The Rho GTPase family is comprised of 20 members
(Table 1), which act as molecular switch proteins that
undergo cycles of activation and inactivation in response
to GDP/GTP exchange and GTP hydrolysis (Fig. 2).

Guanine nucleotide exchange factors (GEFs) promote
the release of GDP, allowing GTP to associate with the
Rho protein and induce conformational changes for
downstream signal transduction. GTPase accelerating
proteins (GAPs) increase the catalytic activity of Rho
proteins to hydrolyse GTP to GDP by providing an
“arginine finger” that enables catalysis.13,14

An amino acid identity matrix is shown in Figure 3a that
indicates the percentage relatedness of each Rho GTPase
protein to the other familymembers. In agreement with pre-
vious alignment studies,15 grouping by hierarchical cluster-
ing16 indicated that there are 4 main protein clusters: Rac
(red typeface) Rho (purple), RhoH (brown) and RhoBTB
(green). The relationship between Rho GTPases is shown in
Figure 3b by a phylogenetic tree where the separation
between proteins is proportional to the calculated evolution-
ary distances.16 Although clustering was based on amino
acid identity, many of the proteins within clusters share
overlapping biological functions. Figure 4a shows the amino
acid conservation greater than 50% for the amino acids
within the most well conserved segment of the 18 most
related proteins, corresponding to residues 4 to 177 for the
Rac1 reference sequence.

The most conserved regions of the Rho GTPases are
the 5 G-boxes (Fig. 4a; G1-G5) that fold in the 3-
dimensional protein to form the nucleotide binding
region as shown for the Rac2-GDP structure (PDB ID:
2W2T17) depicted in Figure 4b (green). The Switch 1
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(Fig. 4a and b, yellow) and Switch 2 regions (Fig. 4a and
b, magenta) change their conformations when GDP is
exchanged for GTP to signal downstream to effector

proteins. By mapping amino acid identity of the 18
most related Rho GTPases (Fig. 4a) onto the 3-dimen-
sional Rac2-GDP structure, the conservation of the gua-
nine nucleotide binding region as well as Switch 2 are
clear (Fig. 4c, red), while distal regions are less con-
served (Fig. 4c, white to blue). The conservation of
Switch 1 amino acids is more variable, with conserved
and divergent residues. The amino acid diversity in
Switch 1 allows each Rho protein to associate with dif-
ferent effectors to induce distinct responses and
behaviors.

Regulatory post-translational modifications

In addition to the carboxyl-terminal modifications that
have been reviewed elsewhere18 which direct membrane
localization, including prenylation (geranylgeranylation
or farnesylation), endoproteolytic removal of the termi-
nal 3 amino acids and carboxy-methylation, as well as
palmitoylation of some family members, various Rho
GTPases undergo further post-translational modifica-
tions that influence their activity and functions. Given
the extensive homology within the Rho GTPase family,
it is likely that comparable post-translational modifica-
tions may occur at conserved sites (Table 1 and Fig. 5).
Phosphorylations (purple) and ubiquitylations (brown)
from the literature and from PhosphoSite (www.phos
phosite.org) have been plotted on the amino acid iden-
tity grid in Figure 5a. In addition, phosphorylations
(purple) and ubiquitylations (brown) identified for
Rac2 have been mapped onto the front (Fig. 5b) and
reverse (Fig. 5c) views of the 3-dimensional structure.

Figure 1. Filamentous actin structures. MDA MB 231 human breast cancer cells were fixed and stained with fluorescently labeled phal-
loidin to visualize filamentous actin structures. The image shows a maximum-projection assembled from 22 Z-plane images acquired
with a Zeiss LSM 880 Airyscan microscope.

Table 1. Rho GTPases, post-translational modifications and
mutations.

Rho
GTPase

Alternative
name

Post-translational
modifications Mutations

Rac1 AMP-Y32;23 pY64;24

pS71;27 Ub-K147;43,45

Ub-K166;46

P29S;63-66 N92I;66

Rac2 P29L;63,66 P29Q;66

D57N;54-56 W56X;5757
Rac3 Ub-K16642

RhoG
CDC42 G25K AMP-Y32;23 pY32;20

pY64;25 pS71;28

RhoJ TCL
RhoQ TC10 pT189;114

RhoU Wrch1 pY254;115

RhoV Chp/Wrch2
RhoA Ub-K6, Ub-K7;39 pS26;26

AMP-Y32;23 nY32;21

pY66;19 Ub-K135;40

G17V;72-74 R5Q;72,75,76

R5W, G17E, L22R,
V38G, Y42C, E54K,
W58S, R68P, L69R,
Y74D;76 C16R, G17E,
T19I, D120Y;74 I23R,
L22H, Y42F, Y42S,
L69R, D76V;75 E40Q,
Y42I;65 A161E;73

RhoB
RhoC
RhoD
RhoF Rif
RhoE Rnd3
RhoN Rnd2
RhoS Rnd1
RhoH TTF Y38X;59

RhoBTB1
RhoBTB2 DBC2

pYD phospho-tyrosine, pSD phospho-serine, pTD phospho-threonine, nYD
nitrated tyrosine, AMP-YD AMPylated tyrosine, Ub-KD ubiquitylated lysine.
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The tyrosine analogous to RhoA Y34 (identical in 20/
20 Rho proteins) in the Switch1 region is phosphorylated
in RhoA19 and CDC42.20 Nitration of RhoA Y34 in
response to lipopolysaccharide treatment results in
reduced GDP affinity to promote GDP/GTP exchange

and consequent RhoA activation,21 which suggests that
phosphorylation at this conserved site might also be a
mechanism of activation. Interestingly, AMPylation of
RhoA Y34, Rac1 Y32 or CDC42 Y32, which could be cat-
alyzed by the human HYPE protein,22 blocked interac-
tions with downstream effector proteins to inhibit
signaling,23 suggesting that modifications at this site
could be a general mechanism for inactivation as well as
activation. Phosphorylation of the tyrosine in the Switch
2 region analogous to RhoA Y66 (15/20 identical) occurs
in RhoA,19 Rac1,24 and CDC42.25 Rac1 Y64 phosphory-
lation inhibited cell spreading and lamellipodia forma-
tion, likely due to increased association with RhoGDIs
and decreased association with GEFs and effectors,24

while CDC42 Y64 phosphorylation also increased
RhoGDI binding.25 The conservation of these tyrosine
residues, their accessibility on the Switch 1 and Switch 2
sites and the impact of their modifications on protein
function suggest that they may be commonly targeted
for post-translational modification as a regulatory
mechanism.

RhoA can also be inhibited by Mst3-mediated phos-
phorylation on S2626 which is serine or threonine at this
analogous position in 12/20 Rho GTPases. Rac1 is

Figure 3. The Rho GTPase family. (A) An amino acid identity matrix was generated by comparing the primary sequence of 20 human
Rho proteins. Grouping into Rac (red), Rho (purple), RhoH (brown) and RhoBTB (green) groups was by hierarchical clustering using the
Multalin multiple sequence alignment program.16 (B) A rooted phylogenetic tree of the 20 human Rho GTPases was generated by hier-
archical clusing using the Multalin multiple sequence alignment program.16 Distances between proteins are proportional to their PAM
(point accepted mutation) score of molecular evolution.

Figure 2. Rho GTPases are molecular switches. When associated GEF
molecules promote GDP release, GTP is bound which results in con-
formational changes in the Switch 1 and Switch 2 regions that enable
interactions with downstream effector proteins and consequent sig-
nal transduction. Upon association with GAPs, GTP is hydrolysed to
GDP and Pi is released to inactivate the Rho protein.
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phosphorylated on S71 (13/20 identical) by Akt to
inhibit GTP binding,27 similar to the CDC42 S71 phos-
phorylation28 that is PI-3 kinase inhibitor sensitive.29

The extensive conservation of many of the phosphoryla-
tion sites suggests that they may be general targets for
post-translational modifications to provide additional
levels of regulation. How these modifications may inter-
act with disease-associated mutations (discussed below)
is currently unknown, nor is it clear how these modifica-
tions would impact the efficacy of small molecule inhibi-
tors. The consequence of these modifications on Rho
GTPase activity and function illustrate the complexity
and multi-layered nature of the regulatory mechanisms.

Ubiquitylation and regulation of protein
stability

In addition to regulation through modulation of inactiva-
tion/activation cycling and subcellular localization, Rho
GTPase signaling may also be influenced by varying protein
levels. Expression of RhoB,30 RhoC,31 Rac3,32 RhoG,33

RhoU,34 RhoE,31,35 RhoS36 and RhoH37 can be induced by
various stimuli. Conversely, ubiquitylation and subsequent
proteasome-mediated degradation act to limit signaling and
consequent effects on the actin cytoskeleton. RhoA is modi-
fied by ubiquitin ligase complexes directed by the E3 target-
ing proteins Smurf1 on K6 and K7,38,39 by FBXL19 on
K135,40 and BACURD family proteins.41 Rac3 is ubiquity-
lated on K166 by the E3 protein FBXL19,42 while Rac1 is
ubiquitylated by HACE on K147,43,44 XIAP and c-IAP1 on
K147,45 and by FBXL19 on K166 dependent on S71 phos-
phorylation.46 Unlike the conservation of several tyrosine
residues that undergo phosphorylation in multiple Rho
GTPases, the positions of ubiquitylated lysines are not con-
served (Fig. 5a), and most identified ubiquitylation events
occur in a “Ubiquitylation region” on the opposite side of
the protein from the GTP-binding and switch regions
(Fig. 5b and c). Many additional Rho GTPases have lysines
scattered around this surface that are potentially ubiquity-
lated to regulate protein stability.

The significance of Rac1 regulation via ubiquitylation
was revealed by the discovery of HACE1 ubiquitin ligase

Figure 4. Amino acid conservation in the Rho GTPases. (A) The core conserved segments, with important features numbered by their
positions within amino acids 4–177 of Rac1, of the 18 most related Rho GTPases are depicted with percentages of amino acid identity
ranging from 100% (red) to less than 50% (white). Guanine nucleotide binding regions are shown as G1 to G5 boxes (green). Switch 1
(yellow) and Switch 2 (magenta) regions are also depicted. (B) Rac2-GDP (PDB ID: 2W2T) structure was rendered with Chimera,112 with
G boxes (green), Switch 1 (yellow) and Switch 2 (magenta) regions indicated. (C) Amino acid identity for 18 Rho GTPases was deter-
mined with Clustal Omega 113 and mapped onto Rac2-GDP with Chimera. Colors depicting amino acid identity from 100% (red) to 0%
(blue) as indicated.
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as a tumor suppressor in Wilm’s tumor.47 Subsequent
investigations found HACE1 expression to be reduced in
multiple cancers by several mechanisms including chro-
mosomal translocation, deletions or loss-of-heterozygos-
ity, as well as by epigenetic suppression.47,48 Although
reduced HACE1 expression would be predicted to have
pleiotropic consequences due to its multiple targets, a
key effect of HACE1 loss is increased Rac1 activity that
induces cell migration and reactive oxygen species gener-
ation43,44,49 that likely contribute to Rac-mediated tumor
progression.50

Rho GTPase mutations

Almost concurrent with their discovery, it was recog-
nized that HRas, KRas and NRas GTPases had high fre-
quencies of activating mutations in human cancers that
work by reducing intrinsic and/or GAP-induced GTPase
activity, thereby locking the protein in the on-state.51

Similar GTPase deficient mutations have not been
detected for Rho GTPases, and for many years it was

believed that Rho proteins were not mutated in patho-
logical conditions. However, the advent of large-scale
gene sequencing has revealed both gain-of-function and
loss-of-function mutations in several Rho GTPases.
These findings have implications for how these proteins
might be targeted by therapeutic agents, and suggest
potential adverse effects that such treatments might
evoke.

Immunodeficiency syndromes

Although infrequent, inactivating Rac2 mutations are
associated with human immunodeficiency syndromes.52

Rac2 has important roles in regulating the NADPH oxi-
dase complex that generates superoxide in phagocytic
cells of the immune system.53 In addition, Rac2 also con-
tributes to the chemotactic and phagocytic activities of
immune cells such as neutrophils.52 A Rac2 D57N muta-
tion was identified in a human neutrophil immunodefi-
ciency syndrome patient; the effect of this mutation was
to decrease Rac2 GTP-binding, resulting in a dominant-

Figure 5. Phosphorylation and ubiquitylation of Rho GTPases. (A) Phosphorylation (purple) and ubiquitylation (brown) events reported
in the literature or PhosphoSite (www.phosphosite.org) were mapped onto the amino acid identity grid depicting the core conserved
segments, analogous to amino acids 4–177 of Rac1, of the 18 most related Rho GTPases, ranging from 100% identity (salmon) to less
than 50% (white). (B) The phosphorylations (purple) and ubiquitylations (brown) of Rac2 were mapped onto the 3-dimensional struc-
ture, with G boxes (green), Switch 1 (yellow) and Switch 2 (magenta) regions depicted. (C) View rotated 180� of Rac2 phosphorylations
and ubiquitylations.
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negative acting protein that repressed endogenous Rac
function.54,55 Rac2 D57N was also identified in an addi-
tional patient screened for T-cell lymphopenia.56 Homo-
zygous Rac2 nonsense mutations at codon 56 (W56X)
were identified in siblings with common variable immu-
nodeficiency.57 Unlike the manifestation of neutrophil
dysfunction in patients bearing D57N mutations within
weeks after birth, patients with W56X mutations did not
present severe neonatal abnormalities. Instead, symp-
toms including recurrent infections did not emerge until
the patients reached 6 months and 2 y of age,57 suggest-
ing that the effect of Rac2 protein absence was less potent
than the dominant-inhibitory action of Rac2 D57N on
endogenous wild-type Rac1.54,55

RhoH is predominantly expressed in haematopoietic
cells,52 and is GTPase defective due to 2 differences at
conserved sites analogous to Rac1 G12 and Q61 (similar
to differences in RhoE, RhoN, RhoS, RhoBTB1 and
RhoBTB2 at these positions) that would affect attacking
water and GAP arginine finger co-ordination such that it
remains constitutively GTP-bound.37 RhoH deletion in
mice revealed essential roles in T cell receptor signaling
that are required for thymocyte selection and matura-
tion.58 Two adult human siblings with T cell defects that
made them susceptible to infections by b-papilloma
viruses were found to have homozygous nonsense RhoH
mutations in codon 38 (Y38X) that resulted in loss of
protein expression.59 Consistent with the effects
observed in RhoH¡/¡ mice,58,59 T cell receptor function
was impaired and there were reduced numbers of tissue-
homing integrin b7-positive T cells that would likely con-
tribute to the observed susceptibility to b-papilloma viral
infections.

Cancer

Although many of the first DBL-homology-containing
guanine nucleotide exchange factors (GEFs) were discov-
ered on the basis of their ability to oncogenically trans-
form murine fibroblasts, including the prototype GEF
Dbl,60 GTPase-defective Rho proteins are inefficient
oncogenes. Their poor transforming activity was attrib-
uted to a requirement for rapid GDP/GTP cycling, akin
to the effect of activated GEFs, rather than persistent
activation induced by GTPase-inactivating mutations.
Consistent with this hypothesis, the rapid-cycling
CDC42 F28L mutation, in which nucleotide-binding site
and hydrogen bonding network disorder enhance spon-
taneous GDP/GTP exchange,61 had potent transforming
activity.62

Recent high-throughput sequencing has led to the dis-
covery of several significantly occurring Rac1 mutations
(Table 1). In sun-exposed melanomas, Rac1 P29S

substitutions were identified63,64 that were proposed to
alter Switch 1 conformation to destabilize the GDP-
bound state and stabilize the GTP-bound form.63,64 The
Rac1 P29S mutation was also detected in a case of head
and neck squamous cell carcinoma.65 Analogous Rac2
P29L63,66 and P29Q mutations66 have been identified,
reinforcing the importance of this Proline residue for
normal Switch I region function. Additional activating
Rac1 mutations were identified in various cancer cell
lines,66 each of which were found to increase spontane-
ous GDP release to allow rapid GDP/GTP cycling that
increases signal output.66 Similarly, there is elevated
expression of the rapidly GDP/GTP exchanging Rac1B
splice variant in colorectal,67 breast,68 lung,69 thyroid,70

and pancreatic71 cancers. These findings indicate that
increased Rac signaling contributes to processes that pro-
mote tumorigenesis.

In contrast to the significant occurrence of Rac1 acti-
vation in cancer, frequent inactivating RhoA G17V
mutations have been detected in T cell lymphomas.72-74

The substitution of Valine for Glycine in the nucleotide
binding pocket was predicted to introduce a bulky side-
chain72 that would result in reduced GTP binding.73,74 In
addition, RhoA G17V more effectively bound RhoGEFs
than wild-type RhoA, and acted as a dominant-negative
protein in cells to inhibit endogenous RhoA func-
tions.73,74 Sequencing RhoA in Burkitt lymphomas
revealed additional mutations (Table 1) that were pre-
dicted to reduce GEF binding and consequent GDP/GTP
exchange.75 In diffuse-type gastric cancer, further RhoA
mutations were identified and found to confer growth
promoting effects that wild-type RhoA did not.76 Two
additional mutations were found in RhoA in head and
neck squamous cell carcinoma that mapped to the
Switch 1 region.65 Given that the mutations often clus-
tered in regions important for GTP binding or effector
interaction (including recurrent Y42 mutations),77 these
alterations may act as loss-of-function mutations that
exert dominant-negative actions. The distribution of
apparently inactivating RhoA mutations at varying
amino acids also suggests that loss-of-function mutations
could act via different mechanisms to achieve the same
outcome. Since Rho signaling antagonizes Rac activ-
ity,78,79 one possibility is that the effect of reduced RhoA
signaling on tumorigenesis is mediated, at least in part,
by enabling Rac functions.

In addition to the coding mutation described above,
the RhoH gene is frequently altered by mutations in 5’
untranslated regions and by chromosomal transloca-
tions.80 In fact, the intronless RhoH gene was first
detected as part of a translocation between chromosomes
3 and 4 with the BCL6 gene in a non-Hodgkin lym-
phoma cell line, and was initially called TTF for
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translocation three four.81 The RhoH gene was found to
have undergone aberrant somatic hypermutation in ger-
minal center-derived diffuse large-cell lymophomas, akin
to the hypermutation of immunoglobulin variable region
genes that normally takes place in B cell centroblasts to
increase antibody diversity.82 Since its initial discovery,
RhoH gene mutations have been identified in lympho-
mas, mature B-cell neoplasms, multiple myeloma and
lymphoproliferative disorders linked to immunodeficien-
cies associated with viral infections.80,83 In addition,
reduced RhoH expression has been described in hairy
cell leukemia84 and acute myeloid leukemia,85 although
the causes for the low expression has not been deter-
mined. These alterations consistently lead to decreased
RhoH expression, however the link between low RhoH
protein levels and haematopoietic tumourigenesis is
unclear. Although RhoH¡/¡ mice have impaired T cell
receptor signaling and defective thymocyte selection and
maturation that lead to T cell deficiency, they did not
develop lymphomas.58,86 It was noted that basal Rac1
activity was higher in RhoH¡/¡ mice,86 while RhoH was
also found to inhibit signaling downstream of active
Rac1.37 Therefore, one possibility is that, like inactivating
RhoA mutants, reduced RhoH signaling may contribute
to tumourigenesis by enhancing Rac functions.

In addition to their Rho GTPase related N-terminal
region, RhoBTB1 and RhoBTB2 have a large C-terminal
extension that includes a Proline-rich region, 2 BTB
(broad-complex, tramtrack, bric �a brac) domains and a
conserved C-terminal region.87 The additional domains
associate with a number of proteins, several of which are
components of ubiquitin ligase complexes that regulate
the degradation of proteins involved with cell cycle pro-
gression and vesicle transport, as well as the influencing
the stability of the RhoBTB proteins themselves.
RhoBTB2 was identified as a putative tumor suppressor
gene (Deleted in Breast Cancer 2; DBC2) that is located
on chromosome 8p21 which is deleted or mutated in
breast cancer.88 Subsequently, it has been found that
there is significant loss of heterozygosity (LOH) of the
RhoBTB2 gene in bladder89 and gastric cancers,90 and
LOH of the RhoBTB1 gene in head and neck squamous
cell carcinoma.91 In addition, rare somatic mutations
have been identified in the RhoBTB1 and RhoBTB2 genes
in these studies. However, more frequent are observa-
tions of reduced RhoBTB1 and RhoBTB2 expression,
likely due to epigenetic factors including promoter meth-
ylation.92 The tumor suppressor functions of RhoBTB1
and RhoBTB2, which may be lost as a result of gene dele-
tion, mutation or reduced gene expression, are believed
to be related to actions of the protein-associating C-ter-
minal extension and not the Rho-homologous N-ter-
mini.87 Although expression of RhoBTB1 or RhoBTB2

did not significantly affect actin cytoskeleton struc-
tures,93 it has been suggested that the Rho-homologous
region may interact with the BTB domain containing
region to regulate associations with additional protein
partners.94 Therefore, it remains to be determined
whether the rare mutations detected in the Rho-homo-
lgous region (http://cancer.sanger.ac.uk/cosmic) may
affect the tumor suppressive function of RhoBTB1 and
RhoBTB2 by interfering with the formation of protein
complexes with the C-terminal regions.

Large scale sequencing efforts have identified sporadic
mutations in all 20 RhoGTPases in a large variety of cancers
(http://cancer.sanger.ac.uk/cosmic). Some substitutions
may be so conservative that they have little to no effect
on protein function, while others may be adventitious
mutations that are merely by-products of high mutation
rates. Additional research will reveal whether specific
mutations are passengers or drivers that contribute sub-
stantively to tumor initiation, growth and progression.

Small molecule inhibitor development

Given the initial associations of Rho GTPase signaling with
cancer metastasis95 and later discovery of activating muta-
tions in tumors, there has been interest in developing small
molecule inhibitors to inhibit Rho GTPase signaling.96 One
strategy employed has been to inhibit the interactions
between GTPase and cognate GEF. The most widely-used
GEF blocking compound is NSC23766, which was origi-
nally identified by in silico molecule docking and then vali-
dated as impairing the interaction of Rac1 with Trio and
TIAM1 GEFs.97 Although the potency of this compound is
relatively low, limiting its potential for further development
as a clinical candidate, it has been very useful as a tool com-
pound and for providing proof-of-concept data. The inhibi-
tor EHT1864,98 which binds Rac1, Rac1b, Rac2 and Rac3,
induces nucleotide release and can block TIAM1 interaction
leading to inhibition of signaling99 Additional small mole-
cule Rac1/RhoG inhibitors that target GEF interactions
have been identified100,101 on the basis of blocking Trio GEF
interactions, as well as Y16102 and Rhosin103 that were dis-
covered based on interference with LARG-RhoA binding.
Cell-based screening for inhibitors of PIP2-induced actin
polymerization in Xenopus laevis egg cytoplasmic extracts
led to the identification of a series of Pirl1-related com-
pounds that were found to block GEF-induced CDC42 acti-
vation,104 latterly the Pirl1 related compound 2 was named
CASIN.105

An alternative strategy has been to directly target the
GTPase. Compound library screening based on competi-
tion with fluorescent-GTP for bead-immobilized GTPase
binding identified both broad-specificity106 and CDC42-
selective molecules.107 In silico docking and validation by
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surface-plasmon resonance resulted in the identification
of RhoA inhibitors that act by GTP-competition.108 A
similar virtual screen led to the discovery of Rhosin,103

however in this case binding occurs in a shallow groove
that forms part of the interface with GEFs including
LARG, DBL and LBC.

Although these results validate the feasibility of discover-
ing Rho GTPase inhibitors, there are several challenges that
must be met if compounds are to be developed toward the
ultimate goal of clinical use. GTP-competitive molecules
would require very high affinities to overcome high cellular
GTP concentrations.109 Given that many of the activating
mutations identified for Rac1 enable GEF-independent
GDP/GTP exchange63,64 as does the Rac1B splice variant
often elevated in cancers,67-71,110 direct GTPase inhibition,
including throughGTP-competition,may be themost effec-
tive means to reduce signal output. Target selectivity is a sig-
nificant issue, particularly since examining the selectivity of
protein-protein interaction inhibitors is technically chal-
lenging due to the complexity of potential on-target and off-
target protein binding partners. Indeed, by testing
NSC23766 and EHT1864 in homozygous Rac1 knockout
platelets, it was determined that both compounds have
Rac1-independent effects including direct inhibition of the
Rac1 effectors PAK1 and PAK2.111 Many protein-protein
inhibitors bind to surface pockets at the interaction inter-
face, rather than deep pockets such as the nucleotide binding
region. Although there may be sufficient differences in these
relatively shallow surface pockets to confer selectivity, it is
may be difficult for structure-activity relationship (SAR)
medicinal chemistry to simultaneously increase potency
andmaintain selectivity.

The humanmutation data suggests that selectivity would
indeed be important for compounds to be used clinically.
While Rac1 inhibition appears to be a potentially efficacious
strategy, concomitant RhoA inhibition could have pro-
tumorigenic effects.65,72-74,76 In addition, the immunodefi-
ciencies observed in patients with Rac2 mutations54-56 sug-
gest that a Rac1 inhibitor might be immunosuppressive due
to the likely difficulty in avoiding simultaneous inhibition of
the highly-related (92% identity) Rac2 protein. If Rac1
inhibitors also blocked RhoH function, there might also be a
risk of immunosuppression59 that could lead to susceptibil-
ity to viral infection and an increased risk of haematopoietic
cancers.80,83-85

Future directions

Despite the relative maturity of the Rho GTPase field, novel
discoveries are continually made. Greatest attention has
been paid to RhoA, Rac1 and CDC42, leaving considerable
opportunity for details regarding the regulation and func-
tion of the remaining family members to be uncovered.

Post-translational modifications at highly-conserved sites
are suggestive that they may occur broadly. The occurrence
of genetic mutations in the coding sequences of every Rho
GTPase also suggests that there may be functional conse-
quences for each protein. The recent emergence of gene-
editing technologies will enable studies on the effect of
these mutations in cellular contexts, and using in vivomod-
els. Conditional genetically-modified in vivo models will
continue to uncover the biological functions of the Rho
GTPases in physiologically relevant environments as well
as their contributions to pathological conditions, and may
provide important clues about the potential utility, as well
as adverse effects, of pharmacological inhibitors. Ulti-
mately, the benefits and risks of potential Rho GTPase tar-
geted therapeutics will be elucidated following rigorous
testing in appropriate model systems.
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