

Charles M. Grisham

Enzyme Kinetics

林翰佳 老師

課程網站 <u>http://lms.ls.ntou.edu.tw/course/106</u> hanjia@mail.ntou.edu.tw

NTOU 2010

WTOU 2011

Outline

- Part I: Get to know enzymes
 - Enzyme Features
 - Enzyme nomenclature
 - Activity

S Lin's Biochemistry Lecture

- Unusual enzymes..
- Part II: Enzyme kinetics
- Part III: Inhibitor and bimolecular kinetics

S NTOU 2010

Lin's Biochemistry Lecture

Lin's Bioc

hemistry Lecture

Essential Questions

- Before this class, ask your self the following questions:
 - What are enzymes?
 - How do enzymes work?
 - How many enzymes you know?
- What is kinetics?
- What is enzyme inhibitor?

S MATOU 2010

Virtually All Reactions in Cells Are Mediated by Enzymes

- Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates (see Figure 13.1)
- Enzymes provide cells with the ability to exert kinetic control over thermodynamic potentiality
- Living systems use enzymes to accelerate and control the rates of vitally important biochemical reactions
- · Enzymes are the agents of metabolic function

Figure 13.1 Reaction profile showing the large free energy of activation for glucose oxidation. Enzymes lower ΔG^{\ddagger} , thereby accelerating rate.

NTOU 2010 0

S Lin's Biochemistry Lecture

S Lin's Biochemistry Lecture

Catalytic Power

- Catalytic power is defined as the ratio of the enzyme-catalyzed rate of a reaction to the uncatalyzed rate
- · Enzymes can accelerate reactions as much as 10¹⁶ over uncatalyzed rates
- Urease is a good example:
 - Catalyzed rate: 3x10⁴/sec
 - Uncatalyzed rate: 3x10 ⁻¹⁰/sec
 - Ratio is 1x1014

- WTOU 2010 13.1 What Characteristic Features Define Enzymes?
- S Lin's Biochemistry Lecture Catalytic power
 - Specificity
 - Regulation

Lin's Biochemistry Lecture

- Enzyme nomenclature
- Coenzymes and cofactors

NTOU 2010 Specificity Enzymes selectively recognize proper substrates over other molecules Enzymes produce products in very high yields - often much greater than 95% Specificity is controlled by structure - the

unique fit of substrate with enzyme controls the selectivity for substrate and the product yield

5

S NTOU 2010

90% yield in each step; 35% over 10 steps

S NTOU 2010

S Lin's Biochemistry Lecture

Enzyme nomenclature

- Common name:
 - Suffix -ase to substrate
 - · Urease: urea hydrolyzing enzyme
 - Phosphatase: hydrolyzing phosphoryl group
 - What is the activity of following enzymes?
 - Catalase
 - Trypsin
 - Pepsin
- Systematic classification
 - · 6 major classes of reaction

Way of Naming Metabolic Reactions

E.C. Number	Systematic Name and Subclasses	E.C. Number	Systematic Name and Subclasses
1	Oxdoorductorer (oxidation-reduction reactions)	4	Lyases (addition to double bonds)
1.1	Acting on CH-OH group of donors	4.1	C==C lyases
1.1.1	With NAD or NADP as acceptor	4.1.1	Carboxy lyases
1.1.8	With O ₂ as acceptor	4.1.2	Aldehyde lynnes
1.2	Acting on the C=O group of domars	4.2	C=O lyanes
1.2.3	With O ₂ as acceptor	4.2.1	Hydrohases
1.3	Acting on the CH-CH group of donnes	4.5	C==N lyases
1.5.1	With NAD or NADP as acceptor	4.8.1	Ammunia-lyases
2	Transferances (transfer of functional groups)	5	homennes (isomerization reactions
2.1	Transferring C-1 groups	5.1	Racemases and epimerases
2.1.1	Methyltrausderases	3,1.3	Acting on carbohydrates
2.1.2	Hydroxymethyltransferases and	5.2	Coelmin isomeranet
	formyltransferases	6	Ligase (formation of bonds with ATP cleavings
9.1.8	Carboxyltrautferases and	6.1	Forming C=O bonds
	carbamiyltransferases	6.1.1	Amines acid-RNA ligases
2.9	Transferring aldehydic or ketonic residues	6.2	Forming C-S bendy
2.5	Acyltransferases	6.5	Forming C-N hunds.
2.4	Glycosyltransferases	6.4	Forming C-C bourds
2.6	Transferring N-containing groups	6.9.1	Carboxylases
2.6.1	Aminotransferases	100 Carlos	
2,7	Transferring P-containing groups		
2.7.1	With an alcohol group as acceptor		
3	Hydrolases (hydrolysis reactions)		
5.1	Cleaving ester linkage		
\$1.1	Carboxylic ester hydrolases		
3.1.3	Phosphoric monoester hydrolases		
3.1.4	Phosphoric diester hydrolases		

Lin's Biochemistry Lecture

S NTOU 2010

Example:

- Classification of the enzyme catalyzing the following reaction:
- ATP + D-glucose → ADP + D-glucose-6phosphate
- Phosphate group transferred
 - Transferase (class 2)
 - transferring P-containing group (subclass 7)
 - With an alcohol group as acceptor (sub-subclass 1)
 - » Entry 2: glucokinase (E.C.2.7.1.2.)
 - » Entry 1: hexokinase (E.C.2.7.1.1)
- What is kinase?

13

NTOU 2010

S Lin's Biochemistry Lecture

Why Enzymes Are So Specific?

- The "Lock and key" hypothesis
- The "Induced fit" hypothesis
- Induced fit favors formation of the transitionstate
- Specificity and reactivity are often linked.
 - hexokinase example
 - binding of glucose in the active site induces a conformational change in the enzyme
 - causes the two domains of hexokinase to close around the substrate, creating the catalytic site

NTOU 2010

Coenzymes and Cofactors

- Nonprotein components essential to enzyme activity
- Cofactor = vitamin?
- Prosthetic group?
- Holoenzyme vs. apoenzyme

Metal lons and Some Enzymes That Require Them		Coenzymes Serving as Transient Carriers of Specific Atoms or Functional Groups			
Metal lan	Enzyme	Coenzyme	Entity Transferred	Representative Enzymes Using Coenzymes	
Ee ²⁺ or	Cytochrome oxidase	Thiamine pyrophosphate (TPP)	Aldehydes	Pyravan dehydrogenaac	
Fe ²	Catalase	Flavin astenine dinacleotide (FAD)	Hydengen atoms	Succinate dehydrogenase	
	Peroxidase	Nicoturamide adenine chinicleotide	Hydrade una (HT*)	Alcohol dela drogenase	
Cu ^{2*}	Cutochrome oxidase	(NAD)	1		
Zaiva	DNA polymerase	Coencyme A (CoA)	Acyl groups	Acetyl-CoA carboxybase	
	Carbonic auhydrase Alcohol delndrogenase	Pyridoxal phosphate (PLP)	Amino groups	Aspartate	
Mg ⁹⁴	Hexokinase Glucose-6-phospharase	5'-Deoxyadenow/cobalamin (vitamin B ₁₀)	H atoms and alkyl groups	Methylmalonyl-GoA mnuo	
Minte	Argimuse	Biotin (biocytin)	COv	Propionyl-CoA carboxylus	
K ^p	(also requires Mg2+)	Terrahysteofolate (THP)	Other one-earbon groups, such as formyl and methyl	Thymidylate southase	
Nitt	Unsase		grimps		
Mit	Nitrate reductase				
Se	Glutathione peroxidase				

S NTOU 2010

Enzymatic Activity and pH

- Enzyme-substrate recognition and catalysis are greatly dependent on pH
- Enzymes have a variety of ionizable side chains that determine its secondary and tertiary structure and also affect events in the active site
- Substrate may also have ionizable groups
- Enzymes are usually active only over a limited range of pH

Figure 13.11 The pH activity profiles of four different enzymes.

17

Q NTOU 2010

The Response of Enzymatic Activity to Temperature

- Rates of enzyme-catalyzed reactions generally increase with increasing temperature
- However, at temperatures above 50° to 60° C, enzymes typically show a decline in activity
- Two effects here:
 - Enzyme rate typically doubles in rate for ever 10°C as long as the enzyme is stable and active
 - At higher temperatures, the protein becomes unstable and denaturation occurs

Unusual Enzymes

- Ribozymes segments of RNA that display enzyme activity in the absence of protein
 - Examples: RNase P and peptidyl transferase
- Abzymes antibodies raised to bind the transition state of a reaction of interest
 - For a good review of abzymes, see Science, Vol. 269, pages 1835-1842 (1995)
 - Transition states are covered in more depth in Chapter 14

```
RNA Molecules That Are Catalytic Have Been Termed "Ribozymes"
```

Figure 13.26 (a) The 50S subunit from *H. marismortui*. (b) The aminoacyl-tRNA (yellow) and the peptidyl-tRNA (orange) in the peptidyl transferase active site.

S NTOU 2010

6

Lin's Biochemistry Lecture

Lin's Biochemistry Lecture

13.8 Is It Possible to Design An Enzyme to Catalyze Any Desired Reaction?

- A known enzyme can be "engineered" by in vitro mutagenesis, replacing active site residues with new ones that might catalyze a desired reaction
- Another approach attempts to design a totally new protein with the desired structure and activity
 - This latter approach often begins with studies "in silico" i.e., computer modeling
 - Protein folding and stability issues make this approach more difficult
 - And the cellular environment may provide complications not apparent in the computer modeling

End of Part 1

- Ask yourself...
 - What are general features of an enzyme?
 - Why and how an enzyme could be so specific?
 - Are all enzymes proteins?
 - What kind of enzyme can you buy and use in your daily life? Where are they come from?
 - Can we design an enzyme by ourselves?

28

S NTOU 2010

13.2 Can the Rate of an Enzyme-Catalyzed Reaction Be Defined in a Mathematical Way?

- What is Kinetics?
 - the branch of science concerned with the rates of reactions
- What can we learn from enzyme kinetics?
 - to determine the maximum reaction velocity and binding affinities for substrates and inhibitors
- Why we have to learn about enzyme kinetics?
 - To know insights of enzyme mechanisms and metabolic pathways
 - This information can be exploited to control and manipulate the course of metabolic events (Pharmaceutical purpose)
- 29

S NTOU 2010

Before we learn enzyme kinetics...

- Let's review some general ideas...
 - Chemical kinetics
 - Activation energy
 - Transition state
 - Reaction rate

S Lin's Biochemistry Lecture

Lin's Biochemistry Lecture

- Several kinetics terms to understand
- rate or velocity
- rate constant
- rate law
- order of a reaction
- · molecularity of a reaction

- NTOU 2010
- Chemical Kinetics Provides a Foundation for Exploring Enzyme Kinetics
- Enzyme kinetics is based on chemical kinetics:
- First-order reaction = unimolecular reaction → molecularity =1
 - The simple elementary reaction of A→P is a first-order reaction
 - Examples
 - Intramolecular rearrangement reaction
 - Isotope decay

32

NTOU 2010

Chemical Kinetics: First-order reaction

Consider a reaction of overall stoichiometry as shown: $A \rightarrow P$

$$v = \frac{d[P]}{dt} = \frac{-d[A]}{dt}$$
$$v = \frac{-[A]}{dt} = k[A]$$

• The rate is proportional to the concentration of A 33

S NTOU 2010

Chemical Kinetics: Second-order reaction

- Bimolecular reaction = second-order reaction
- Molecularities = 2
- $A + B \rightarrow P + Q$
 - the rate law is

v = k [A][B]

S Lin's Biochemistry Lecture $2 A \rightarrow P + Q$

 $v = k [A]^2$

• Question: What is the unit of rate constant (k)?

Figure 13.4 Plot of the course of a first-order reaction. The half-time, $t_{1/2}$ is the time for one-half of the starting amount of A to disappear. 34

NTOU 2010

Lin's Biochemistry Lecture

Summary of Chemical Kinetics

- Molecularities > 2 is rare and never greater 3!
- Remember: Kinetics cannot prove a reaction mechanism. They can only rule out various alternative hypotheses!

⁽a) raising the temperature from $\rm T_1$ to $\rm T_2$

(b) adding a catalyst.

37

S NTOU 2010

S Lin's Biochemistry Lecture

Activation energy

- Free energy of activation, ΔG^{\ddagger}
 - the energy required to raise the average energy of 1 mol of reactant to the transition state energy (at a given temperature).
- Decreasing ΔG^{\ddagger} increases the reaction rate
- The activation energy is related to the rate constant by Arrhenius equation:

$k = A e^{-\Delta G/RT}$

Note the difference between ΔG and ΔG^{\ddagger}

Transition state
The transition state sits at the apex of the energy profile in the energy diagram
A typical enzyme-catalyzed reaction must pass through a transition state

• The reaction rate is proportional to the concentration of reactant molecules with the transition-state energy

NTOU 2010

S Lin's Biochemistry Lecture

S Lin's Biochemistry Lecture

- 13.3 What Equations Define the Kinetics of Enzyme-Catalyzed Reactions?
- Enzyme is not involved in the chemical kinetics of the reaction!
 - True or False?

• A simple first-order reactions

- display a plot of the reaction rate vs. reactant concentration as a straight line (Figure 13.6)
- If the same reaction with an enzyme involved, is anything changed?

40

Figure 13.6

A plot of v vs. [A] for the unimolecular chemical reaction, $A \rightarrow P$, yields a straight line having a slope equal to k.

41

As [S] increases, kinetic behavior changes from 1st order to zero-order kinetics

S (NTOU 2010

Lin's Biochemistry

Lecture

27

Lin's Biochemistry Lecture

- Enzyme did change the chemical kinetics
- Truth is more complicated!
- At low concentrations of the substrate
 - The rate is proportional to S, as in a first-order reaction
- At higher concentrations of substrate
 - The enzyme reaction approaches zero-order kinetics

42

S (NTOU 2010

- We need a new equation for enzymecatalyzed chemical kinetics!
- Louis Michaelis and Maud Menten invented a new equation which became the fundamental equation of enzyme kinetics.
- What can we learn from M-M equation?
 - We could know two major indexes of the enzyme: K_m and V_{max}!

NTOU 2010

The Michaelis-Menten Equation

- Assumptions of M-M enzyme reaction
 - 1. It assumes the formation of an enzymesubstrate complex
 - 2. It assumes that the ES complex is in rapid equilibrium with free enzyme
 - 3. Breakdown of ES to form products is assumed to be slower than
 - 1) formation of ES and
 - 2) breakdown of ES to re-form E and S

$$E + S \underset{k_{-1}}{\overset{k_1}{\longleftrightarrow}} ES \underset{k_{-1}}{\overset{k_2}{\longrightarrow}} E + P \tag{1}$$

S . NTOU 2010

Understanding K_m

- K_m is the "kinetic activator constant" derived from rate constants
- Learning Point!
 - Three meanings of $\mathrm{K}_{\mathrm{m}}!$
 - How to get K_m of an enzyme?
- Please pay attention!

NTOU 2010

Lin's Biochemistry Lecture

Start P

iochemistry Lecture

Two More Assumptions of M-M equation

- 4. [ES] Remains Constant: also known as steady state assumption by Briggs & Haldane in 1925
- 5. Rate measurement is finished right after Substrate added
 - − To ignore $E + P \rightarrow ES$
- These assumption would simplify the following calculating

NTOU 2010

K_m Step 1

• According to M-M assumption, enzyme reaction could be presented as...

$$E + S \underset{k_{-1}}{\overset{k_1}{\longleftrightarrow}} ES \underset{k_{-1}}{\overset{k_2}{\longrightarrow}} E + P \tag{1}$$

The synthesis rate of ES

 $V_f = k_1 [E] [S]$

Therefore, the dissociation of ES

 $V_d = k_{-1} [ES] + k_2 [ES]$

K_m Step 2

- Briggs & Haldane assumed that V_f = V_d under steady-state!
- Therefore....

NTOU 2010

- $V_f = k_1 [E] [S] = k_1 [ES] + k_2 [ES] = V_d (Eq1)$
- Please remember
 - [E]: concentration of enzyme without substrate binding!
 - [ES]: concentration of enzyme binding with substrate!
 - We don't know [E] and [ES], actually. We only know [E_T]: concentration of total enzyme!

49

The First Meaning of K_m $K_{m} = \frac{k_{-1} + k_{2}}{k_{1}} = \frac{\text{Sum of ES dissociation rate constants}}{\text{ES synthesis rate constant}}$ • An enzyme with bigger K_m: - Dissociation rate constants are larger or synthesis rate constant is smaller

- Literally, substrate and enzyme are difficult to bind!
- What if an enzyme with small K_m ?
- Therefore, K_m is related to the enzymesubstrate binding capacity!

- $K_m \operatorname{Step 3}$ Because $[E_T] = [E] + [ES]$ Therefore $[E] = [E_T] - [ES]$ • Try to reduce unknown value in Eq1 $k_1 [E] [S] = k_1 [ES] + k_2 [ES]$ $k_1([E_T] - [ES]) [S] = (k_1 + k_2) [ES]$ • Move all constants to one side, then.... $\underline{([E_T] - [ES]) [S]} = \frac{k_1 + k_2}{2} = K_m (Eq2)$
 - $\frac{([E_T] [ES])[S]}{[ES]} = \frac{k_1 + k_2}{k_1} = K_m (Eq2)$

K_m Step 4

NTOU 2010

in's Biochemistry Lectur

 In all kinds of kinetics studies, the most important issue is reaction rate, "V" !

 $V = k_2 [ES]$ (*Eq*3)

• We don't know [ES] exactly, but we know...

$$K_{m} = \frac{([E_{T}] - [ES]) [S]}{[ES]}$$

• Try to move [ES] to one side...

NTOU 2010

The Second Meaning of K_m

• After [ES] moved to one side, *Eq*2 becomes..

 $[ES] = \frac{[E_T] \cdot [S]}{K_m + [S]} \quad (Eq4)$

• Now combine *Eq*3 and *Eq*4, you will get

$$V = \frac{k_2[E_T] \cdot [S]}{K_m + [S]} \quad (Eq5)$$

- K_m is related to the reaction rate!
 - An enzyme with smaller K_m may has higher reaction rate!

K_m Step 6

Now Eq5 becomes

NTOU 2010

$$V_{max} = \frac{k_2[\mathsf{E}_{\mathsf{T}}] \cdot [\mathsf{S}]}{[\mathsf{S}]} = k_2[\mathsf{E}_{\mathsf{T}}] \quad (Eq6)$$

• We could also combine *Eq*5 and *Eq*6, make it simpler!

$$V = \frac{V_{max} \cdot [S]}{K_m + [S]} \quad (Eq7)$$

 $K_{m} \text{ Step 5}$ $V = \frac{k_{2}[E_{T}] \cdot [S]}{K_{m} + [S]} \quad (Eq5)$ As you see in Eq5. V increases v

- As you see in *Eq*5, *V* increases when [S] increased.
- If [S] becomes very high, what happened to V?
 - Enzyme will be saturated!

$$-\operatorname{K_m}+[\operatorname{S}] \xrightarrow{} [\operatorname{S}]$$

$$-V \rightarrow V_{\max}$$

Lecture

• The Third Meaning of K_m
• From Eq7, we could redefine the meaning of K_m as..

$$\kappa_{m} = \frac{[S] \cdot (V_{max} - V)}{V} = [S] \cdot (\frac{V_{max}}{V} - 1) (Eq8)$$
• That means when $\frac{V_{max}}{V} - 1 = 1$, $\kappa_{m} = [S] - Also means $\frac{V_{max}}{V} = 2 \Rightarrow V = \frac{1}{2} V_{max}$$

• When reaction rate is ½ V_{max}, the corresponding [S] equals to K_m!

Take a look at the K_m values for some enzymes and their substrates

Enzyme	Substrate	K _m (mM)
Carbonic anbydrase	CO ₂	12
Chymotrypsin	N-Benzovityrosinamide	2.5
	Acetyl-t-tryptopharamide	5
	N-Formyltyrosinamide	12
	N-Acetyltyrosinamide	32
	Glycyltyrosinamide	122
Hexokinase	Glucose	0.15
	Fructose	1.5
β-Calactosidase	Lactose	4
Glutamate dehydrogenase	NH4 ⁺	57
· · · · · · · · · · · · · · · · · · ·	Glutamate	0.12
	a-Ketoglutarate	2
	NAD ⁺	0.025
	NADH	0.018
Aspartate aminotransferase	Aspartate	0.9
	α-Ketoglutarate	0.1
	Oxaloacetate	0.04
	Glutamate	4
Threonine deaminase	Threonine	5
Arginyl-tRNA synthetase	Arginine	0.003
	tRNA ^{Acg}	0.000
	ATP	0.3
Pyruvate carboxylase	HCO ₃ -	1.0
	Pyruvate	0.4
	ATP	0.06
Penicillinase	Benzylpenicillin	0.05
Lysozyme	Hexa-N-acetylglucosamine	0.006

57

S NTOU 2010

The Turnover Number Defines the Activity of One Enzyme Molecule

TABLE 13.4 Values of k _{cat} (Turnover Number) for Some Enzymes			
Enzyme		$k_{\rm cat}$ (sec ⁻¹)	
Catalase		40,000,000	
Carbonic anhydrase		1,000,000	
Acetylcholinesterase		14,000	
Penicillinase		2,000	
Lactate dehy	drogenase	1,000	
Chymotrypsin		100	
DNA polymerase I		15	
Lysozyme		0.5	

S (NTOU 2010

S Lin's Biochemistry Lecture

S Lin's Biochemistry Lecture

Other indexes for an enzyme

- k_{cat} , the turnover number
 - A measure of catalytic activity
 - Defines the activity of one molecule of enzyme
- If the M-M model fits, $k_2 = k_{cat} = V_{max}/E_t$
- Values of k_{cat} range from less than 1/sec to many millions per sec

58

Other indexes for an enzyme The Ratio *k*_{cat}/K_m Defines the catalytic efficiency of an enzyme An estimate of "how perfect" the enzyme is

- k_{cat}/K_m is an apparent second-order rate constant
- It measures how the enzyme performs when S is low
- The upper limit for $k_{\text{cat}}/K_{\text{m}}$ is the diffusion limit the rate at which E and S diffuse together

NTOU 2010

The Ratio k_{cat}/K_m Defines the Catalytic Efficiency of an Enzyme

TABLE 13.5 Enzymes Whose k_{cav}/K_m Approaches the Diffusion-Controlled Rate of Association with Substrate				
Enzyme	Substrate	k _{cat} (sec ⁻¹)	К _т (М)	$\frac{k_{cat}/K_m}{(M^{-1} \text{ sec}^{-1})}$
Acetylcholinesterase	Acetylcholine	$1.4 imes 10^4$	9×10^{-5}	$1.6 imes 10^8$
Carbonic	CO_2	$1 imes 10^6$	0.012	$8.3 imes10^7$
anhydrase	HCO_3^-	4×10^5	0.026	$1.5 imes10^7$
Catalase	H_2O_2	$4 imes 10^7$	1.1	4×10^7
Crotonase	Crotonyl-CoA	$5.7 imes10^{3}$	2×10^{-5}	$2.8 imes 10^8$
Fumarase	Fumarate	800	5×10^{-6}	$1.6 imes10^8$
	Malate	900	$2.5 imes 10^{-5}$	$3.6 imes10^7$
Triosephosphate isomerase	Glyceraldehyde- 3-phosphate*	$4.3 imes 10^3$	$1.8 imes 10^{-5}$	2.4×10^8
β-Lactamase	Benzylpenicillin	2×10^3	2×10^{-5}	1×10^8

Catalytic perfection

62

S Lin's Biochemistry Lecture

NTOU 2010

- Because of $V_{\rm max}$
- $V_{\rm max}$ is a *theoretical maximal velocity* and is a constant
- V_{max} is NEVER achieved in reality
- For example:

To reach a rate of 99% $V_{\rm max}$

$$\frac{V}{V} = 0.99 = \frac{[S]}{V}$$

- K_m + [S] V_{max} That means you have to prepare substrate [S] = 99 K_m
- It is not possible practically.

STOU 2010 Linear Plots Can Be Derived from the Michaelis-Menten Equation

$$V = \frac{V_{max} \cdot [S]}{K_m + [S]} \quad (Eq7)$$

Rearrange to obtain the Lineweaver-Burk equation:

$$\frac{1}{v} = \left(\frac{K_m}{V_{\text{max}}}\right) \left(\frac{1}{[S]}\right) + \frac{1}{V_{\text{max}}}$$

• A plot of 1/v versus 1/[S] should yield a straight line

61

5

Lin's Biochemistry Lecture

- pH may effect on $K_{\rm m}$ or $V_{\rm max}$ or both in enzyme kinetics
- What if the plot is not linear?
 - Regulatory enzymes (allosteric enzymes)

End of Part 2

- Ask yourself...
 - How many indexes you have learned to describe the kinetic properties of an enzyme?
 - What is M-M equation? Do you know what's different from enzyme kinetics and chemical kinetics?
 - Do you understand the three meanings of K_m and know how to conduct from Eq1 to Eq8?
 - Do you understand how to plot Lineweaver-Burk plot, and estimate K_m and V_{max} from it?
- 69

NTOU 2010

Irreversible inhibitor

Example:

- Penicillin is an irreversible inhibitor of *glycopeptide* transpeptidase
 - Suicide inhibitor
 - catalyzes an essential step in bacterial cell all synthesis

Q NTOU 2010

Lin's Biochemistry Lecture

Lin's Biochemistry Lecture

- 13.4 What Can Be Learned from the Inhibition of Enzyme Activity?
- · Enzymes may be inhibited reversibly or irreversibly
- Reversible inhibitors
 - may bind at the active site or at some other site
 - Competitive inhibition
 - Noncompetitive inhibition
 - · Uncompetitive inhibition
- Irreversible inhibitors
 - Covalent modification
 - Kinetically similar to cometitive inhibition!

STOU 2010

Reversible Inhibitors May Bind at the Active Site or at Some Other Site

Inhibition Type	Rate Equation	Apparent K _m	Apparent V _{max}
None	$v = V_{\max}[S]/(K_m + [S])$	Km	V _{max}
Competitive	$v = V_{\text{max}}[S] / ([S] + K_m(1 + [I] / K_I))$	$K_m(1 + [I]/K_I)$	$V_{\rm max}$
Noncompetitive	$v = (V_{\max}[S]/(1 + [I]/K_I))/(K_m + [S])$	K_m	$V_{\rm max}/(1 + [I]/K_{\rm I})$
Mixed	$v = V_{\max}[S] / ((1 + [I] / K_I) K_m + (1 + [I] / K_I'[S]))$	$K_m(1 + [I]/K_I)/(1 + [I]/K_I')$	$V_{\rm max}/(1 + [I]/K_{\rm I})$
Uncompetitive	$v = V_{\text{max}}[S]/(K_m + [S](1 + [I]/K_I'))$	$K_m/(1 + [I]/K_I')$	$V_{\rm max}/(1 + [I]/K_{\rm I})$

Competitive inhibition

 Inhibitor, I, also binding to enzyme and compete for the same binding site with substrate

$$E + S \xleftarrow{\kappa_{1}}{K_{1}} ES \xrightarrow{\kappa_{2}} E + P$$

$$E + I \xleftarrow{\kappa_{3}}{K_{3}} EI \xrightarrow{E} \xleftarrow{\kappa_{5}}{K_{5}} \xleftarrow{\kappa_{5}}{K_{5}}$$

$$E \xrightarrow{K_{1}}{K_{1}} \xleftarrow{K_{1}}{K_{5}} \xrightarrow{K_{1}}{K_{5}} \xleftarrow{K_{1}}{K_{5}}$$

73

Kinetic of competitive inhibition Step 2 • Because $E + I \stackrel{K_3}{\longleftrightarrow_{-3}} EI$ • $V_f = V_d$ under steady-state! • Therefore.... $V_f = k_3 [E] [I] = k_{-3} [EI]$ (Eq10) $[EI] = \frac{k_3}{k_3} [E] [I] = 1/k_1 [E] [I]$ (Eq11)

Kinetic of competitive inhibition Step 3 • Knowing $[E_T] = [E] + [ES] + [EI]$ $[E_T] = [E] + \frac{[E][S]}{K_m} + \frac{[E][I]}{K_l}$ (Eq12) • Put [E] to one side.... $[E] = \frac{K_1 K_m [E_T]}{(K_1 K_m + K_1 [S] + K_m [I])}$ (Eq13)

Noncompetitive inhibition

• S and I bind to different sites on the enzyme

ES

- I could bind to E or ES
- 2 K
- 2 types:
 - Pure noncompetition
 - Mixed noncompetition

E + I	$\xrightarrow{K_{\rm I}}$	EI
ES + I	$\xrightarrow{K_{l}^{'}}$	IES

81

NTOU 2010

- Mixed Noncompetitive Inhibition
- Binding of I influences binding of S
- 2 situations:

NTOU 2010

S Lin's Biochemistry Lecture

Star Photo

Bimolecular Reactions Catalyzed by Enzymes

Most enzymes catalyze reactions involving two (or more) substrates

- 2 Reaction mechanisms
 - Sequential (single-displacement) reactions
 - Ping-pong (double-displacement) reactions

85

S NTOU 2010

Random, Single-Displacement Reactions
 All possible binary enzyme-substrate and enzyme-product complexes are formed rapidly and reversibly
 Conversion of AEB to PEQ is the Rate-Limiting Step

If A has no influence on B binding → purely random!

Example of Random, Singledisplacement enzyme • Creatine Kinase (important in muscle) $\begin{array}{c} H_{gN} & \stackrel{CH_3}{\longrightarrow} & \stackrel{Creatine}{\longrightarrow} & \stackrel{O}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{CH_3}{\longrightarrow} & \stackrel{H}{\longrightarrow} & \stackrel{H}{\longrightarrow}$

- Random: either substrate may bind first, followed by the other substrate
- Ordered: a leading substrate binds first, followed by the other substrate
- Similar to noncompetitive inhibition!

– Why?

in's Biochemistry Lecture

STOU 2010

Double-reciprocal form $\frac{1}{V} = \frac{1}{V_{max}} \left(K_m^A + \frac{K_S^A K_m^B}{[B]} \right) \left(\frac{1}{[A]} + \frac{1}{V_{max}} \left(1 + \frac{K_m^B}{[B]} \right) \right)$

STOU 2010

Lineweaver-Burk Plot for singledisplacement bisubstrate enzyme

89

WTOU 2010

hemistry Lecture

Ordered, Single-Displacement Reaction

- The leading substrate (obligatory or compulsory substrate), A, must bind first followed by B.
- Reaction between A and B occurs in the ternary complex and is usually followed by an ordered release of the products, P and Q.

Double Displacement Reaction

- Aka. Ping-Pong reactions
 - Formation of a covalently modified enzyme intermediate.
 - The product of the enzyme's reaction with A (called P in the above scheme) is released prior to reaction of the enzyme with the second substrate, B.

NTOU 2010

- An Alternative Presentation of the Double-Displacement (Ping-Pong) Reaction
- A and Q compete for E
- P and B compete for E'

94

S (NTOU 2010

Lineweaver-Burk Plot for the Double Displacement Reaction

S Lin's Biochemistry Lecture

End of Part 3

- Ask yourself...
 - What is the difference of reversible and irreversible inhibition?
 - What is competitive, noncompetitive, uncompetitive inhibition? What are they look like in Lineweaver-Burk plot?

NTOU 2010

S Lin's Biochemistry Lecture

End of this chapter

• You should know...

- What characteristic features define enzymes?
- How can enzymes be so specific?
- Are all enzymes proteins?
- Is it possible to design an enzyme to catalyze any desired reaction?
- Can the rate of an enzyme-catalyzed reaction be defined in a mathematical way?
- What equations define the kinetics of enzyme-catalyzed reactions?
- What can be learned from the inhibition of enzyme activity?
- What is the kinetic behavior of enzymes catalyzing bimolecular reactions?