

Chapter 14

Reginald H. Garrett Charles M. Grisham

Mechanisms of Enzyme Action

林翰佳 老師

課程網站 http://lms.ls.ntou.edu.tw/course/106

hanjia@mail.ntou.edu.tw

Outline

- Part I: The general concepts of enzyme catalysis
 - What are the magnitudes of enzyme-induced rate accelerations?
 - What role does transition-state stabilization play in enzyme catalysis?
 - How does destabilization of ES affect enzyme catalysis?
 - How tightly do transition-state analogs bind to the active site?
- Part II: The mechanisms of catalysis
- Part III: What can be learned from typical enzyme mechanisms?
 - 3 examples: serine protease, aspartic protease and chorismate mutase!

Essential Questions

- Before this class, ask your self the following questions:
 - How fast an enzyme could accelerate a reaction?
 - Why enzyme could accelerate a reaction?
 - How enzymes could accelerate a reaction?
 - What are the universal chemical principles that influence the mechanisms of enzymes and allow us to understand their enormous catalytic power?

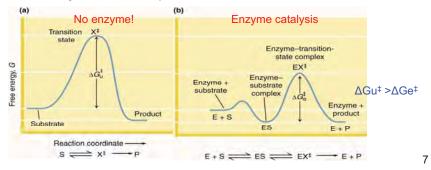
2

Hanjia's Biochemistry Lecture

How Much Enzyme-Induced Rate Accelerations?

- Typically 10⁷ 10¹⁴ greater
- Why? 2 reasons....
 - Stabilization of transition state
 - Destabilization of ES
 - due to strain, desolvation or electrostatic effects
- How? 5 catalytic mechanisms....
 - covalent catalysis
 - general acid or base catalysis
- Low-Barrier H-bonds
- metal ion catalysis
- proximity/orientation (Near-Attack Conformation).

14.1 What Are the Magnitudes of Enzyme-Induced Rate Accelerations?

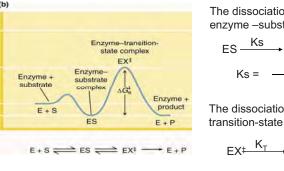

Reaction	Enzyme	Uncatalyzed Rate, v _s (sec ⁻¹)	Catalyzed Rate, v _e (sec ⁻¹)	valva
Fructose-1,6-bisP fructose-6-P + Pi	Fractose-1,6-bisphosphatase	2×10^{-m}	21	$1.05 imes 10^{29}$
$(Ghucose)_n + H_2O \longrightarrow (ghucose)_{n-2} + maltose$	B-aunylase	1.9×10^{-19}	1.4 × 10 ²	7.2×10^{12}
DNA, RNA cleavage	Staphylococcal iniclease	7 8 10 1	95	1.4×10^{12}
$CH_3 - O - PO_3^{2-\alpha} = H_2O \longrightarrow CH_3OH + HPO_9^{2-\alpha}$ Q	Alkaline phosphatase	1×10^{-19}	14	1.4×10^{10}
$H_2N \rightarrow C \rightarrow NH_2 + 2 H_2O + H^+ \rightarrow 2 NH_4^+ + \Pi CO_5$ Q	Urease	3×10^{-j_0}	3×10^4	1×10^{11}
$R - C - O - CH_2CH_3 + H_3O \longrightarrow RCOOH + HOCH_4CH_3$	Chymotrypsia	1×10^{-10}	1×10^{2}	1×10^{12}
$Glucose + ATP \longrightarrow Glucose 6 P + ADP$ Q	Hexokinase	$<1 \times 10^{-13}$	1.3×10^{-3}	>1.3 × 10 ⁿ
$CH_{3}CH_{2}OH + NAD^{\dagger} \longrightarrow CH_{3}CH + NADH + H^{\dagger}$	Alcohol dehydrogenase	$<\!\!6 \times 10^{-12}$	$2.7 imes 10^{-5}$	>4.5 × 10 ⁹
$CO_2 + H_2O \longrightarrow HCO_3 + H^4$	Carbonic anhydrase	10-2	103	1×10^{7}
Greature + ATP + Co-P + ADP	Creatine kinase	<3 × 10.0	4 20 10 - 5	>1.33×10

5

Reason 1: Transition-State Stabilization

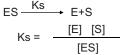
- With enzyme, the transition state changed from X^{\ddagger} to • EX[‡]
- Activation energy difference (ΔG^{\ddagger}) between ES and EX[‡] is smaller than between S and X[‡], therefore the catalyzed rate of product formation will be faster.

What is transition state?


- The structure represents, as nearly as possible, the transition between the reactants and products, and it is known as the transition state.
- Transition =\= intermediates (Ex: ES or EP)
 - Intermediates are longer-lived, with lifetimes in the range of 10⁻¹³ sec to 10⁻³ sec.
 - A typical transition state has very short lifetime, typically 10⁻¹³ sec.

Transition state existed even there is no enzyme

6


Hanjia's Biochemistry Lecture

Reason 2: Destabilize ES complex

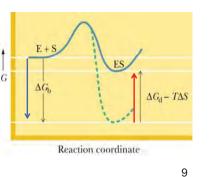
Enzyme catalysis requires To stabilize EX[‡] more!

The dissociation constant for the enzyme -- substrate complex

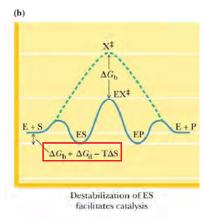
The dissociation constant for the transition-state complex

$$EX^{\ddagger} \xrightarrow{K_{T}} E^{\ddagger}X^{\ddagger}$$

$$K_{T} = \frac{[E] [X^{\ddagger}]}{[EX^{\ddagger}]}$$

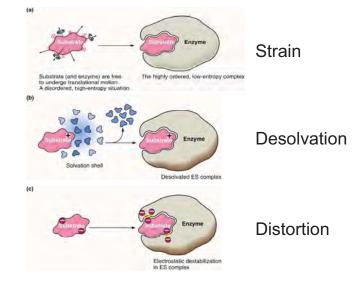

$$K_{T} < K_{s}$$

Dissociation of ES facilitates reaction \rightarrow ke/ku \approx K_S/K_T

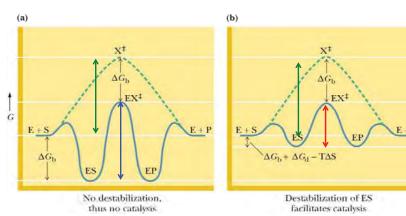


The binding of S to E must be favorable but not too favorable!

- ES cannot be "too tight" The idea is to make the energy barrier between ES and EX[‡] small!
- Intrinsic binding energy △G_b
 - Some amino acid of enzyme favor to bind substrate, making ∆G_b negative!
- Compensation
 - Entropy loss due to the binding of E and S (T Δ S)
 - Destabilization of ES (∆G_d) by strain, distortion, desolvation , and similar effects.


So Manjia's Biochemistry Lecture

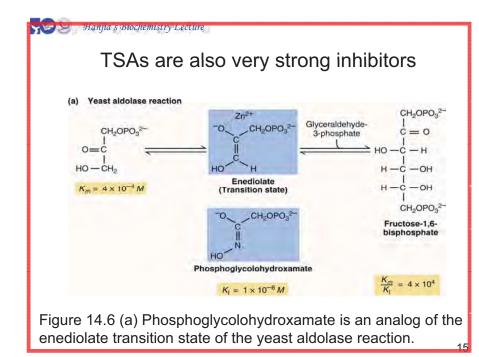
- Net energy difference between E + S and the ES complex is the sum of
 - intrinsic binding energy, <u>∆G</u>_b
 - 2. the entropy loss on binding, T ΔS
 - 3. the distortion energy, ΔG_d .


Destabilization of ES

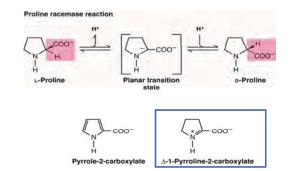
Hanjia's Biochemistry Lecture

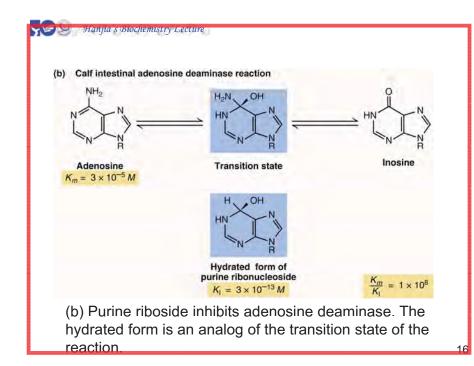
No Destabilization of ES No Catalysis

• Raising the energy of ES raises the rate!



14.4 How Tightly Do Transition-State Analogs Bind to the Active Site?


- To have better ke/ku value, K_S/K_T should be big!
 - $K_{\rm T}$ should be small
 - The affinity of the enzyme for the transition state may be 10⁻²⁰ to 10⁻²⁶ M!
- · Can we prove such kind of tight binding?
- Transition state analogs (TSAs)
 - are stable molecules that are chemically and structurally similar to the transition state
 - bind more strongly than a substrate
 - transition-state analogs are potent enzyme inhibitors



First TSA case: Proline racemase

- Proline racemase, a bacterial enzyme, catalyzes the interconversion of D and L-proline.
- The TSA, *pyrrole-2-carboxylate*, bound to the enzyme 160 times more tightly than L-proline

Hanjia's Biochemistry Lecture

Transition-State Analogs Make Our World Better

- Enzymes are often targets for drugs and other beneficial agents
- Transition state analogs often make ideal enzyme inhibitors
 - Enalapril and Aliskiren lower blood pressure
 - Statins lower serum cholesterol
 - Protease inhibitors are AIDS drugs
 - Juvenile hormone esterase is a pesticide target
 - Tamiflu is a viral neuraminidase inhibitor

Hanjia's Biochemistry Lecture

14.5 What Are the Mechanisms of Catalysis?

- Protein motions are essential to enzyme catalysis
- 5 major mechanisms:
 - Enzymes facilitate formation of near-attack complexes
 - Covalent catalysis
 - General acid-base catalysis
 - Low-barrier hydrogen bonds
 - Metal ion catalysis

End of Part 1

- Ask yourself...
 - What is transition state?
 - What is intermediate?
 - What is the two reasons that enzyme could accelerate reaction?
 - What effects could destabilize ES complex?
 - What is TSA? What can TSA tell us?

18

Hanjia's Biochemistry Lecture

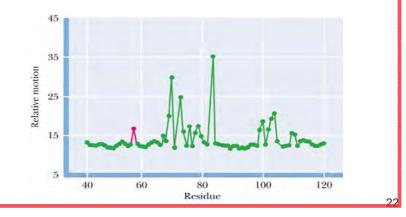
Protein Motions Are Essential to Enzyme Catalysis

- · Proteins are constantly moving
 - bonds vibrate, side chains bend and rotate, backbone loops wiggle and sway, and whole domains move as a unit
- Protein motions support catalysis in several ways. Active site conformation changes can:
 - Assist substrate binding
 - Bring catalytic groups into position
 - Induce formation of NACs
 - Assist in bond making and bond breaking
 - Facilitate conversion of substrate to product

<section-header><section-header><section-header><image><image><image><image>

Hanjia's Biochemistry Lecture

Some Review of General Chemistry


- The custom of writing chemical reaction by Gilbert Newton Lewis and Sir Robert Robinson
- · Review of the concepts
 - Lewis dot structures
 - Valence electrons and formal charge
 - Formal charge = group number nonbonding electrons – (1/2 shared electrons)
 - Electronegativity is also important:

$$-F > O > N > C > H$$

Hanjia's Biochemistry Lecture

Evident of enzyme movement

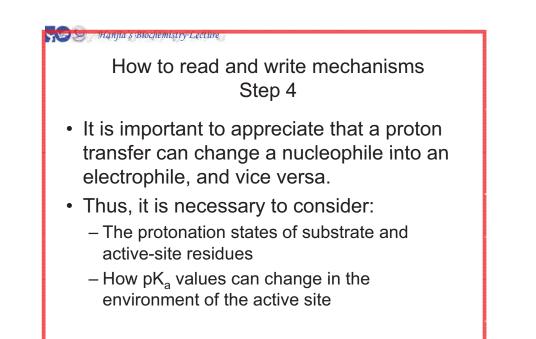
NMR showed that several active-site residues undergo greater motion during catalysis than residues elsewhere in the protein.

Hanjia's Biochemistry Lecture

How to read and write mechanisms Step 1

- In written mechanisms, a curved arrow shows the movement of an electron pair
- And thus the movement of a pair of electrons from a filled orbital to an empty one
- A full arrowhead represents an electron pair
- A half arrowhead represents a single electron

Hanjia's Biochemistry Lecture

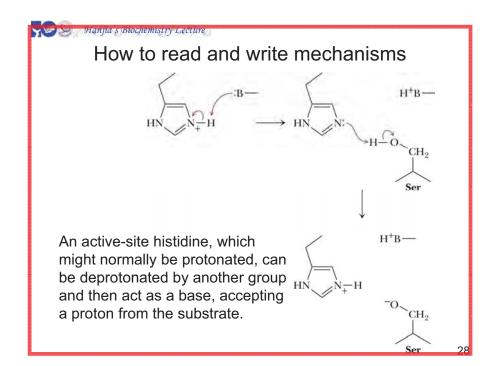

How to read and write mechanisms Step 2

For a **bond-breaking** event, the arrow begins in the middle of the bond, and the arrow points to the atom that will accept the electrons.

$$A \xrightarrow{\frown} B \longrightarrow A^+ + B^-$$

For a **bond-making** event, the arrow begins at the source of the electrons (for example, a nonbonded pair), and the arrowhead points to the atom where the new bond will be formed.

 $:B^{-} \longrightarrow A - B$



Hanjia's Biochemistry Lecture

How to read and write mechanisms Step 3

- It has been estimated that 75% of the steps in enzyme reaction mechanisms are proton (H⁺) transfers.
- If the proton is donated or accepted by a group on the enzyme, it is often convenient (and traditional) to represent the group as "B", for "base", even if B is protonated and behaving as an acid:

$$B \to H : N \longrightarrow B^- + H \to N \longrightarrow$$

How to read and write mechanisms Water can often act as an acid or base at the active site through proton transfer with an assisting active-site residue: $\begin{array}{c} & & & \\$

This type of chemistry is the basis for general acid-base catalysis (discussed on pages 430-431).

Enzymes facilitate formation of nearattack complexes

- In the absence of an enzyme, potential reactant molecules adopt a NAC only about 0.0001% of the time
- On the other hand, NACs have been shown to form in enzyme active sites from 1% to 70% of the time


Mechanism 1: Near-attack complexes

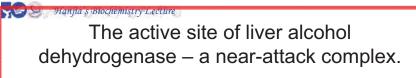
- X-ray crystal structure studies have shown that the reacting atoms and catalytic groups are precisely positioned for their roles.
- The preorganization
 - selects substrate conformations
 - the reacting atoms are in van der Waals contact
 - at an angle resembling the bond to be formed in the transition state
- Thomas Bruice has termed such arrangements
 near-attack conformations (NACs)
- NACs are precursors to reaction transition states

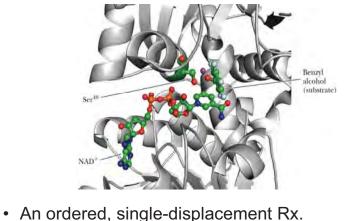
30

Solo Hanjia's Biochemistry Lecture

Requirements of the formation of nearattack complexes

- The energy separation between the NAC and the transition state is approximately the same in the presence and absence of the enzyme.
- In an enzyme active site, the NAC forms more readily than in the uncatalyzed reaction.


33



Mechanism 2: Covalent Catalysis

 Some enzyme reactions derive much of their rate acceleration from the formation of covalent bonds between enzyme and substrate

$$BX + Y \rightarrow BY + X$$
$$BX + Enz \rightarrow E : B + X + Y \rightarrow Enz + BY$$
$$($$

· Intermediate exists as a NAC 60% of the time

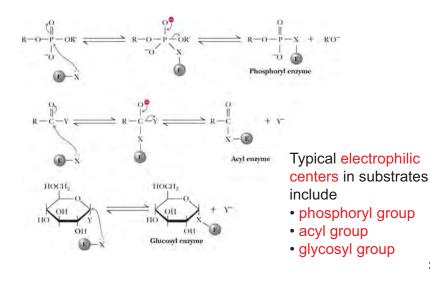
Hanjia's Biochemistry Lecture

Mechanism of Covalent catalysis

- The side chains of amino acids in proteins (Enzyme) offer a variety of nucleophilic centers for catalysis, including amines, carboxylates, aryl and alkyl hydroxyls, imidazoles, and thiol groups.
- These groups readily attack electrophilic centers of substrates, forming covalently bonded enzyme-substrate intermediates.
- The covalent intermediate can be attacked in a second step by water or by a second substrate, forming the desired product

Nucleophilic groups in enzymes

		Nucleophilic group	Amino Acid
		OH	Serine
		SH	Cysteine
н.	COO-	Aspartic acid	
	NH2	Lysine	
		imidazole	Histidine



Enzymes that form covalent intermediates

Enzyme	Reacting Group	Covalent Intermediate
Trypsin Chymotrypsin (pages 434–439)	Serine	Acyl-Ser
Glyceraldehyde-3-P dehydrogenase (page 547)	Cysteine	Acyl-Gys
Phosphoglucomutase (page 447)	Serine	Phospho-Ser
Phosphoglycerate mutase (page 548) Succinyl-CoA synthetase (page 576)	Histidine	Phospho-His
Aldolase (page 545)	Lysine and other	
Pyridoxal phosphate enzymes (pages 408, 782, and 807)	amino groups	Schiff base

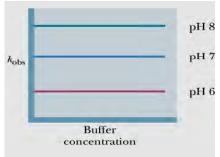
Hanjia's Biochemistry Lecture

Example of Covalent Catalysis

Hanjia's Biochemistry Lecture

Mechanism 3: Acid - Base Catalysis

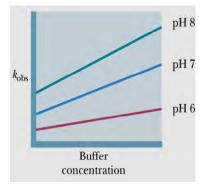
- There are two types of acid-base catalysis:
 - (1) specific acid-base catalysis, in which H⁺ or OH⁻ accelerates the reaction,
 - (2) general acid-base catalysis, in which an acid or base other than H⁺ or OH⁻ accelerates the reaction.


What are "acid and base" ?

	Acid	Base
 Arrhenius 	H ⁺ forming	OH ⁻ forming
Bronsted-Lowry	H ⁺ donor	H ⁺ acceptor
• Lewis	e- acceptor	e⁻ donor

Specific acid or base catalysis

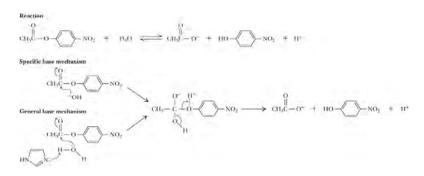
In specific acid or base catalysis, the buffer concentration has no effect.



⁸ In specific acid-base catalysis, H⁺ or OH⁻
⁷ concentration affects the reaction rate, k_{obs} is pH⁶ dependent, but buffers concentration (which accept or donate H⁺/OH⁻) have no effect.

Hanjia's Biochemistry Lecture

General acid-base catalysis


general acid-base catalysis is catalysis in which a proton is transferred in the transition state.

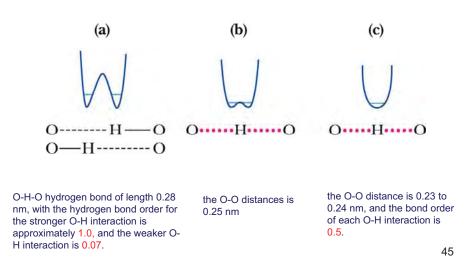
In general acid - base catalysis, in which an ionizable buffer may donate or accept a proton in the transition state, k_{obs} is dependent on buffer concentration.

Hanjia's Biochemistry Lecture

Catalysis of p-nitrophenylacetate hydrolysis can occur either by specific acid hydrolysis or by general base catalysis

Histidine is most effective general acid or base because its pKa is near 7!

Hanjia's Biochemistry Lecture


Mechanism 4: Low-Barrier Hydrogen Bonds (LBHBs)

- In normal hydrogen bonds (O:•••H–O), the O•••O separation is 2.8 Å
- In LBHBs, the O•••O separation decreases until the H atom becomes centered, leaving the H atom to freely exchange between the two O atoms
- pK_a values of the two electronegative atoms must be similar
- LBHB are very strong, transient intermediates that help to accelerate enzyme-catalyzed reactions
 - LBHB may be to redistribute electron density in the intermediate

Ex: Serine Proteases, Asp Protease

Functions of Metal-Ion

- One role for metals in metal-activated enzymes and metalloenzymes is to act as electrophilic catalysts, stabilizing the increased electron density or negative charge that can develop during reactions.
- Another potential function: coordination and increase the acidity of a nucleophile

Hanjia's Biochemistry Lecture

Mechanism 5: Metal-Ion Catalysis

- Many enzymes require metal ions for maximal activity.
- metalloenzyme : enzyme binds the metal very tightly or requires the metal ion to maintain its stable, native state. (metal is coenzyme)
 e.g. Fe, Cu, Zn, Mn, Co.
- metal-activated enzymes :Enzymes that bind metal ions more weakly, perhaps only during the catalytic cycle.
 - e.g Na, K, Mg, Ca

46

Hanjia's Biochemistry Lecture

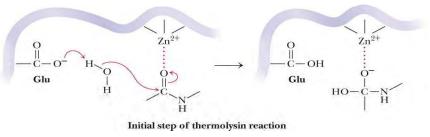


Figure 14.14 Thermolysin is an endoprotease with a catalytic Zn^{2+} ion in the active site. The Zn^{2+} ion stabilizes the buildup of negative charge on the peptide carbonyl oxygen, as a glutamate residue deprotonates water, promoting hydroxide attack on the carbonyl carbon.

Hanjia's Biochemistry Lecture

How Do Active-Site Residues Interact to Support Catalysis?

- About half of the amino acids engage directly in catalytic effects in enzyme active sites
- Other residues may function in secondary roles in the active site:
 - Raising or lowering catalytic residue pK_a values
 - Orientation of catalytic residues
 - Charge stabilization
 - Proton transfers via hydrogen tunneling

49

Hanjia's Biochemistry Lecture

14.5 What Can Be Learned From Typical Enzyme Mechanisms?

- Three typical enzymes to explain the mechanisms:
 - The serine protease:
 - covalent catalysis, general acid-base catalysis, substrate selectivity, LBHB
 - The aspartic protease:
 - general acid-base catalysis, LBHB
 - Chorismate mutase:
 - NAC

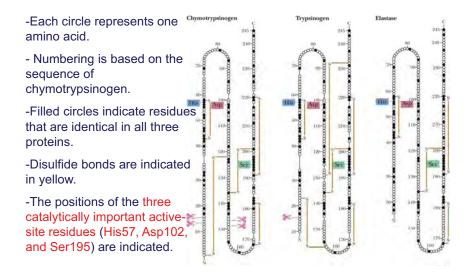
End of Part 2

- Ask yourself...
 - What are general mechanism of enzyme catalysis?
 - Do you know how to read the reaction mechanism?
 - What are general nucleophilic groups in amino acid side chains?
 - What's different between specific and general acid-base reaction?
 - What are the functions of metal ions in enzyme catalysis?

- Example 1: The Serine Proteases Family
 - · All involve a serine in catalysis thus the name
 - Serine proteases includes
 - Trypsin, chymotrypsin, elastase are digestive enzymes and are synthesized in the pancreas and secreted into the digestive tract as inactive proenzymes, or zymogens.
 - Thrombin is a crucial enzyme in the blood-clotting cascade
 - Subtilisin is a bacterial protease
 - Plasmin breaks down the fibrin polymers of blood clots.
 - Tissue plasminogen activator (TPA) specifically cleaves the proenzyme *plasminogen*, yielding plasmin

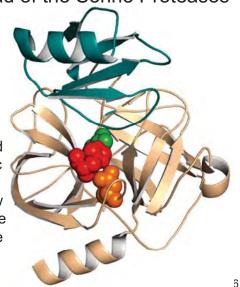
zymogen

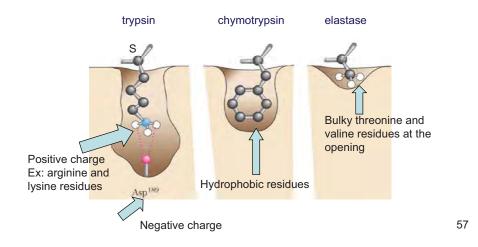
- Proenzyme or zymogen: is an inactive enzyme precursor.
- A zymogen requires a biochemical change (such as a hydrolysis reaction revealing the active site, or changing the configuration to reveal the active site) for it to become an active enzyme.
- Feed forward reaction (positive feedback)!


Catalytic Triad

- Ser is part of a "catalytic triad" of Ser, His, Asp
- Serine proteases are homologous, but locations of the three crucial residues differ somewhat
- Enzymologists agree to number the triad always as His⁵⁷, Asp¹⁰², Ser¹⁹⁵

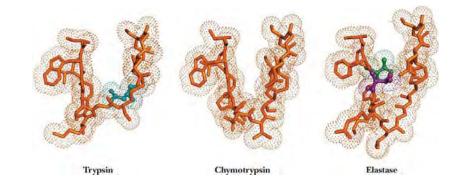
53


Similarity of 3 Serine Proteases


Hanjia's Biochemistry Lecture

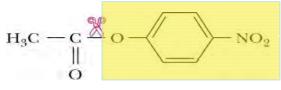
The Catalytic Triad of the Serine Proteases

Figure 14.16 Structure of chymotrypsin (white) in a complex with eglin C (blue ribbon structure), a target substrate. His⁵⁷ (red) is flanked by Asp¹⁰² (gold) and Ser¹⁹⁵ (green). The catalytic site is filled by a peptide segment of eglin. Note how close Ser¹⁹⁵ is to the peptide that would be cleaved in the reaction.



The substrate-binding pockets determine the substrate selectivity

Serine Protease Binding Pockets are Adapted to Particular Substrates

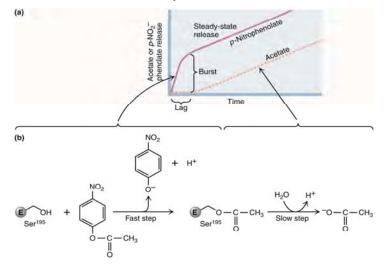


58

Hanjia's Biochemistry Lecture

How to assay the activity of protease?

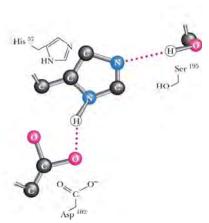
• Serine Proteases Cleave Simple Organic Esters, such as p-Nitrophenylacetate



- Release of this part give yellow color!
- *p*-Nitrophenylacetate

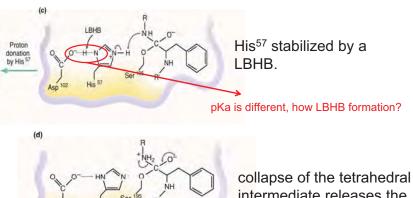
Which protease would cut it?

Hanjia's Biochemistry Lecture


Burst kinetics tell the mechanism of serine protease

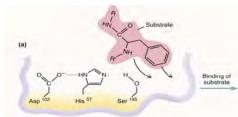
Serine Protease Mechanism

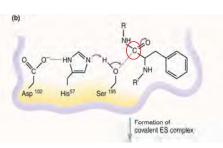
- A mixture of covalent and general acid-base catalysis
 - Asp¹⁰² functions only to orient His⁵⁷
 - His⁵⁷ acts as a general acid and base
 - Ser¹⁹⁵ forms a covalent bond with peptide to be cleaved



61

C-N bond cleavage

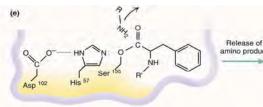

The Serine Protease Mechanism in Detail 2/5


intermediate releases the first product.

Hanjia's Biochemistry Lecture

The Serine Protease Mechanism in Detail 1/5

Binding of a model substrate.

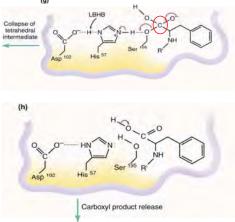

Formation of the covalent ES complex involves general base catalysis by His⁵⁷

Covalent bond formation turns a trigonal C into a tetrahedral C

Hanjia's Biochemistry Lecture

Asp 102

The Serine Protease Mechanism in Detail 3/5


Nucleophilic attack by water

The amino product amino product departs, making room for an entering water molecule.

Nucleophilic attack by water is facilitated by His⁵⁷, acting as a general base.

The Serine Protease Mechanism in Detail 4/5

Collapse of the tetrahedral intermediate cleaves the covalent intermediate, releasing the second product.

Carboxyl product release completes the serine protease mechanism.

65

Hanjia's Biochemistry Lecture

Transition-State Stabilization in the Serine Proteases

- The chymotrypsin mechanism involves two tetrahedral oxyanion intermediates
- These intermediates are stabilized by a pair of amide groups that is termed the "oxyanion hole"
- The amide N-H groups of Ser¹⁹⁵ and Gly¹⁹³ provide primary stabilization of the tetrahedral oxyanion

Solution Hanjia's Biochemistry Lecture

The Serine Protease Mechanism in Detail 5/5

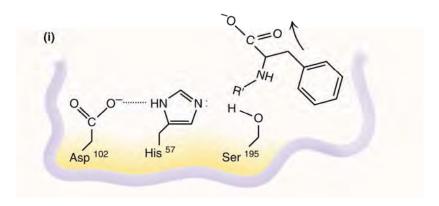
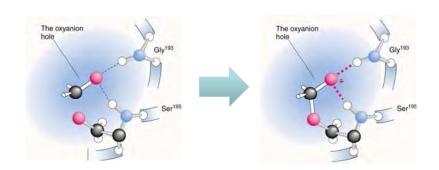



Figure 14.21 The chymotrypsin mechanism: At the completion of the reaction, the side chains of the catalytic triad are restored to their original states.

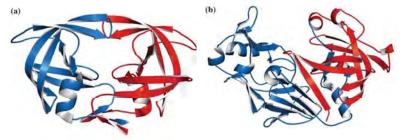
Solo Hanjia's Biochemistry Lecture

The "oxyanion hole"

The oxyanion hole of chymotrypsin stabilizes the tetrahedral oxyanion intermediate seen in the mechanism of Figure 14.21.

Example 2: The Aspartic Proteases

- All involve two Asp residues at the active site
- These two Asp residues work together as general acid-base catalysts
- Most aspartic proteases have a tertiary structure consisting of two lobes (N-terminal and C-terminal) with approximate two-fold symmetry


69

Hanjia's Biochemistry Lecture

The Aspartic Proteases

Most aspartic proteases exhibit a two-lobed structure. Each lobe contributes one catalytic aspartate to the active site. HIV-1 protease is a homodimeric enzyme, with each subunit contributing a catalytic Asp residue.

Figure 14.22 Structures of (a) HIV-1 protease and (b) pepsin. Pepsin's N-terminal half is shown in red; the C-terminal half is shown in blue.

Aspartic proteases play many roles in humans

Name	Source	Function
Pepsin*	Stowach	Digestion of dietary protein
Chymosin [†]	Stomach	Digestion of dietary protein
Cathepsin D	Spleen, liver, and many other animal tissues	Lysosomal digestion of proteins
Renin [‡]	Kidney	Conversion of angiotensinogen to angiotensin I; regulation of blood pressure
HIV-protease*	AIDS virus	Processing of AIDS virus proteins

Hanjia's Biochemistry Lecture

Se Hanjia's Biochemistry Lecture

Aspartic Protease Mechanism

- Enzymologists said aspartic proteases is general acid-base catalysis
 - show one relatively low pK_a, and one relatively high pKa
 - once thought to represent pK₂ values of the two aspartate residues
- Structural Chemists said it is a LBHB catalysis
 - LBHB disperse electron density (electron tunnel)

71

A Mechanism for the Aspartic Proteases

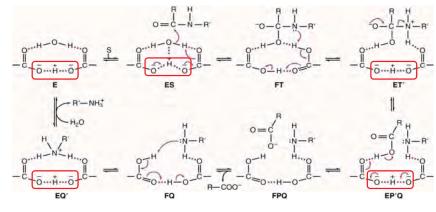
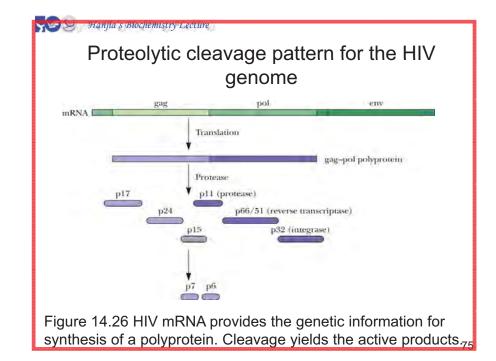
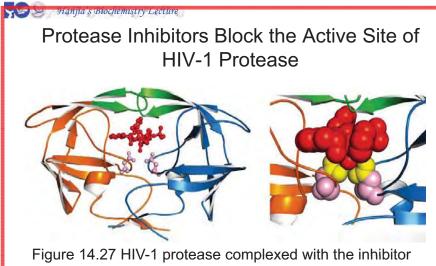



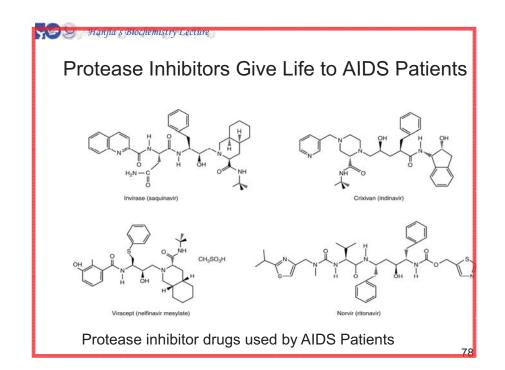
Figure 14.24 Mechanism for the aspartic proteases. LBHBs play a role in states E, ES, ET', EQ', and EP'Q.

73

HIV-1 Protease HIV-1 protease cleaves the polyprotein products of the HIV genome This is a remarkable imitation of mammalian aspartic proteases HIV-1 protease is a homodimer - more genetically economical for the virus Active site is two-fold symmetric

Hanjia's Biochemistry Lectur

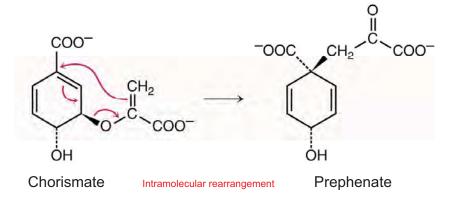



Figure 14.27 HIV-1 protease complexed with the inhibitor Crixivan (red) made by Merck. The "flaps" that cover the active site are green; the catalytic active site Asp residues are violet.

Protease Inhibitors Give Life to AIDS Patients *Protease inhibitors as AIDS drugs*If the HIV-1 protease can be selectively inhibited, then new HIV particles cannot form Several novel protease inhibitors are currently marketed as AIDS drugs Many such inhibitors work in a culture dish However, a successful drug must be able to kill the virus in a human subject without blocking other essential proteases in the body

Hanjia's Biochemistry Lecture

Example 3: Chorismate Mutase


- Biosynthesis of Phe and Tyr in microbe and plant.
- Single substrate!
- Intramolecular rearrangement
- Good example of the catalytic power of enzyme
 - Uncatalyzed reaction use the same transition state!

Hanjia's Biochemistry Lecture

Chorismate Mutase: A Model for Understanding Catalytic Power and Efficiency

(a) Chorismate mutase reaction

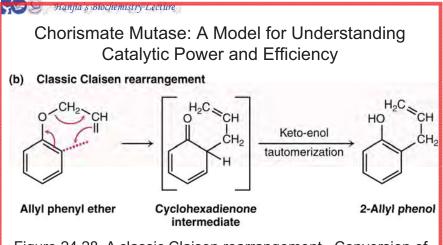
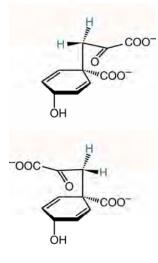
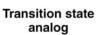



Figure 24.28 A classic Claisen rearrangement. Conversion of allyl phenyl ether to 2-allyl alcohol proceeds through a cyclohexadienone intermediate, which then undergoes a keto-enol tautomerization.

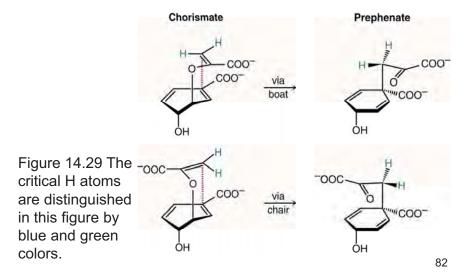
Hanjia's Biochemistry Lecture

Use TSA to understand the chair mechanism of chorismate mutase

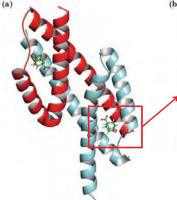

Prephenate

uncatalyzed solution counterpart proceed via a chair mechanism.

Jeremy Knowles has shown that

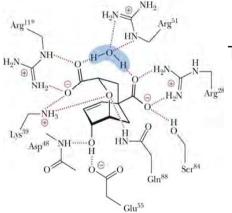

both the chorismate mutase and its

OF


Two possible mechanisms of chorismate rearrangement reaction

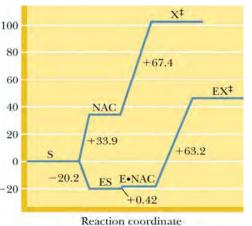


Hanjia's Biochemistry Lecture


The structure of *E. coli* chorismate mutase

- Chorismate mutase is a homodimer.
- The active site is formed by each dimer!

The Chorismate Mutase Active Site Favors a NAC


 TSA stabilization by
 Twelve electrostatic and hydrogen-bonding interactions

85

Hanjia's Biochemistry Lecture

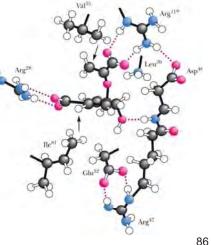

Formation of a NAC is facile in the chorismate mutase active site

Figure 14.34 Chorismate mutase 100 facilitates NAC 80 formation. The energy required to Free energy, G 60 move from the NAC 40 to the transition state is essentially 20 equivalent in the 0 catalyzed and uncatalyzed -20reactions.

Hanjia's Biochemistry Lecture

- Figure 14.33
 Chorismate bound to
 the active site of
 chorismate mutase in a
 structure that
 resembles a NAC.
 - Arrows: hydrophobic interactions
 - Red dotted lines: electrostatic interactions.

A High-Energy Intermediate in the Phosphoglucomutase Reaction was seen by X-ray diffraction!
 Transition state has very short lifetime? Why we could see it?

(c) Crystal struct

End of Part 3

- Ask yourself...
 - What is the catalytic mechanism of serine protease?
 - What is the catalytic mechanism of aspartic protease?
 - What is the catalytic mechanism of chorismate mutase?

End of this class

- You should know...
 - Why enzyme could accelerate a reaction?
 - 2 major reasons
 - How enzyme could accelerate a reaction?
 - 5 mechanisms
 - Examples of enzyme catalysis mechanism
 - Remember serine protease!