登入首頁
收藏 0
返回課程
CH 24
  • 生物化學 (二)
  • [在課程開始之前]
  • 林翰佳老師評分標準
  • 如何作筆記?心智圖 (mind map) 示範
  • 網路流傳的十大筆記方法,總應該有適合你的方法吧!
  • 商業周刊 - 從大賣場看瑞士和台灣學生哪裡不一樣!開學了,瑞士學生不買「書套」而買「卷宗夾」,因為...
  • [Topic 1] Chapter 13 酵素動力學 Enzyme kinetics
  • [上課講義] Chap 13 酵素與酵素動力學
  • [簡介] 可汗學院的短片,介紹「酵素」的基本知識
  • [翰佳老師影音課程] 13-1 有關酵素,你該知道的一些事
  • [翰佳老師影音課程] 13-2 酵素動力學,微積分被當的不要怕!
  • [翰佳老師影音課程] 13-3 酵素抑制劑
  • [課程補充資料]
  • [大突破] DeepMind 人工智慧推測蛋白質立體構造準確度大增
  • [Topic 2] Chapter 14 酵素催化原理與作用機轉
  • [上課講義] Chap 14 酵素催化原理
  • [翰佳老師影音課程] 14-1 更深入一點看酵素的催化原理
  • [翰佳老師影音課程] 14-2 各種催化的機制
  • [翰佳老師影音課程] 14-3 三種酵素催化的實例探討
  • 課程補充資料
  • [Topic 3] Chapter 15 酵素活性調節
  • [上課講義] Chap 15 酵素活性調節
  • [翰佳老師影音課程] 15-1 影響酵素活性的因素有那些
  • [翰佳老師影音課程] 15-2 Allosteric regulation 異位調控現象與理論
  • [翰佳老師影音課程] 15-3 以血紅素攜帶氧氣的能力為例,看蛋白質的調控
  • [Topic 4] Chapter 17 代謝的概念 (請自行閱讀,老師不考)
  • B_BC_chap17
  • Chapter 17 影音
  • [Topic 5] Chapter 18 醣解作用
  • B_BC_chap18
  • [翰佳老師影音課程] 18-1 醣解作用第一階段前五個反應
  • [翰佳老師影音課程] 18-2 醣解作用第二階段後五個反應
  • [翰佳老師影音課程] 18-3 其他醣類進入醣解作用,醣解作用與癌症
  • [Topic 6] Chapter 19 檸檬酸循環
  • B_BC_chap19
  • [翰佳老師影音課程] 19-1 檸檬酸循環作用第一階段前五個反應
  • [翰佳老師影音課程] 19-2 檸檬酸循環作用第二階段後四個反應
  • [翰佳老師影音課程] 19-3 檸檬酸循環補充反應與相關反應
  • [Topic 8] Chapter 20 電子傳遞鏈
  • B_BC_chap20
  • 20 章投影片
  • [翰佳老師影音課程] 20-1 還原電位與電子傳遞
  • [翰佳老師影音課程] 20-2 四大複合體與質子梯度
  • [翰佳老師影音課程] 20-3 粒線體 ATP 合成酶、氧化磷酸化效率以及細胞凋亡
  • [外部影片] 電子傳遞鏈、細胞呼吸的動畫
  • [外部影片] 看看 ATP Synthase 的作用機制
  • [外部影片] ATP synthase 作用機制 (這部影片更擬真)
  • [Topic 9] Chapter 21 光合作用
  • B_BC_chap21
  • [翰佳老師影音課程] 21-1 光合作用
  • [翰佳老師影音課程] 21-2 光反應系統
  • [翰佳老師影音課程] 21-3 暗反應、光呼吸以及 C4 植物
  • [外部影片] Photosynthesis (看看外國老師怎麼教?)
  • [外部影片] Photosynthesis 動畫
  • 最新版 Chap 21 光合作用投影片
  • [Topic 7] Chapter 22 醣質新生
  • B_BC_chap22
  • [翰佳老師影音課程] 22-1 醣質新生
  • [翰佳老師影音課程] 22-2 肝醣代謝與五碳醣磷酸途徑
  • 葡萄糖-6-磷酸脫氫酶缺乏症 (蠶豆症是怎麼一回事?)
  • ch23
  • 2016 Ch23 Fatty Acid Catabolism
  • CH 23
  • ch24
  • 2016 CH24 Lipid biosynthesis
  • CH 24
  • ch25
  • 2016CH25Nitrogen Acquisition and Amino Acid Metabolism
  • 2016CH25Nitrogen Acquisition and Amino Acid Metabolism.fsp
  • ch26
  • 2016CH26Synthesis and Degradation of Nucleotides
  • 2016CH26Synthesis and Degradation of Nucleotides
  • P.902-P.911 & Chapter23
  • P.902-P.911 & Chapter23
  • 索引
  • 重點
  • 討論 (1)
  • 筆記
長度: 2:36:24, 發表時間 : 2016-05-06 12:53
觀看次數 : 2,877
  • 01:34
    1. Slide 1
  • 00:35
    2. Focus on
  • 00:36
    3. Overview of Fatty Acid Metabolism
  • 02:20
    4. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 00:04
    5. Overview of Fatty Acid Metabolism
  • 00:26
    6. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 01:27
    7. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 00:18
    8. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 00:47
    9. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 00:16
    10. Quaternary structure of the E. coli BCCP (dimer)-BC(dimer) complex
  • 00:04
    11. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 00:06
    12. Quaternary structure of the E. coli BCCP (dimer)-BC(dimer) complex
  • 00:53
    13. Acetyl-CoA Carboxylase in Animals Is a Multifunctional Protein
  • 02:26
    14. The Activity of Acetyl-CoA Carboxylase Is Modulated by Phosphorylation and Dephosphorylation
  • 02:04
    15. Slide 9
  • 02:48
    16. Synthesis of Fatty Acids:
  • 01:49
    17. There are three principle sources of acetyl CoA:1.Amino acid degradation produces cytosolic acetyl CoA2.Fatty acid oxidation produces mitochondrial acetyl-CoA3.Glycolysis yields cytosolic pyruvate, which (after transport into the mitochondria) is conve
  • 04:32
    18. Slide 12
  • 00:25
    19. The citrate-malate-pyruvate shuttle
  • 00:02
    20. Slide 12
  • 00:01
    21. The citrate-malate-pyruvate shuttle
  • 00:35
    22. Slide 12
  • 00:04
    23. The citrate-malate-pyruvate shuttle
  • 00:33
    24. Fatty acid synthase
  • 00:00
    25. Slide 15
  • 00:00
    26. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    27. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    28. FAS II in yeast
  • 00:03
    29. Slide 19
  • 00:00
    30. FAS II in yeast
  • 00:00
    31. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    32. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    33. Slide 15
  • 00:31
    34. Fatty acid synthase
  • 00:00
    35. Slide 15
  • 00:00
    36. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:50
    37. (Fatty Acyl Synthase II; FAS II)
  • 00:02
    38. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    39. Slide 15
  • 00:23
    40. Fatty acid synthase
  • 00:00
    41. Slide 15
  • 00:59
    42. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    43. Slide 15
  • 00:42
    44. Fatty acid synthase
  • 01:01
    45. Slide 15
  • 00:15
    46. Fatty acid synthase
  • 00:00
    47. Slide 15
  • 00:00
    48. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:29
    49. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    50. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    51. Slide 15
  • 00:00
    52. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    53. (Fatty Acyl Synthase II; FAS II)
  • 00:14
    54. FAS II in yeast
  • 01:11
    55. (Fatty Acyl Synthase II; FAS II)
  • 00:02
    56. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    57. Slide 15
  • 00:27
    58. Fatty acid synthase
  • 00:00
    59. Slide 15
  • 02:46
    60. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:05
    61. Slide 15
  • 00:01
    62. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:01
    63. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    64. FAS II in yeast
  • 00:26
    65. Slide 19
  • 00:00
    66. Slide 20
  • 00:06
    67. Slide 19
  • 00:06
    68. FAS II in yeast
  • 00:05
    69. Slide 19
  • 00:01
    70. Slide 20
  • 00:34
    71. Slide 21
  • 00:00
    72. Slide 20
  • 00:00
    73. Slide 19
  • 00:00
    74. FAS II in yeast
  • 00:00
    75. (Fatty Acyl Synthase II; FAS II)
  • 00:13
    76. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    77. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    78. FAS II in yeast
  • 00:00
    79. Slide 19
  • 00:00
    80. Slide 20
  • 01:10
    81. Slide 21
  • 00:39
    82. Slide 22
  • 00:07
    83. Slide 23
  • 00:01
    84. Slide 24
  • 00:02
    85. Slide 25
  • 00:00
    86. Slide 24
  • 00:29
    87. Slide 23
  • 00:01
    88. Slide 24
  • 00:16
    89. Slide 25
  • 00:00
    90. Slide 24
  • 00:01
    91. Slide 23
  • 00:00
    92. Slide 22
  • 00:17
    93. Slide 21
  • 00:00
    94. Slide 22
  • 00:07
    95. Slide 23
  • 00:00
    96. Slide 24
  • 01:45
    97. Slide 25
  • 00:42
    98. The Design Strategy for Fatty Acid Synthesis:Fatty acid chains are constructed by the addition of two-carbon units derived from acetyl-CoAThe acetate units are activated by carboxylation with CO2 to form malonyl-CoA (at the expense of ATP)The addition of
  • 01:04
    99. There Are Four Major Differences Between Fatty Acid Breakdown and Biosynthesis
  • 00:00
    100. The Design Strategy for Fatty Acid Synthesis:Fatty acid chains are constructed by the addition of two-carbon units derived from acetyl-CoAThe acetate units are activated by carboxylation with CO2 to form malonyl-CoA (at the expense of ATP)The addition of
  • 00:00
    101. Slide 25
  • 00:00
    102. Slide 24
  • 00:00
    103. Slide 23
  • 00:00
    104. Slide 22
  • 00:00
    105. Slide 21
  • 00:12
    106. Slide 20
  • 00:00
    107. Slide 21
  • 00:00
    108. Slide 22
  • 00:00
    109. Slide 23
  • 00:00
    110. Slide 24
  • 00:00
    111. Slide 25
  • 00:01
    112. The Design Strategy for Fatty Acid Synthesis:Fatty acid chains are constructed by the addition of two-carbon units derived from acetyl-CoAThe acetate units are activated by carboxylation with CO2 to form malonyl-CoA (at the expense of ATP)The addition of
  • 03:05
    113. There Are Four Major Differences Between Fatty Acid Breakdown and Biosynthesis
  • 00:45
    114. Slide 28
  • 02:23
    115. C16 Fatty Acids May Undergo Elongation and Unsaturation
  • 04:35
    116. Slide 30
  • 00:10
    117. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:00
    118. Slide 30
  • 00:00
    119. C16 Fatty Acids May Undergo Elongation and Unsaturation
  • 00:10
    120. Slide 28
  • 00:00
    121. C16 Fatty Acids May Undergo Elongation and Unsaturation
  • 00:00
    122. Slide 30
  • 00:13
    123. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:05
    124. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 00:09
    125. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:39
    126. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 00:18
    127. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:20
    128. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 01:39
    129. Unsaturation Reactions Occur in Eukaryotesin the Middle of an Aliphatic Chain
  • 00:01
    130. Slide 34
  • 00:22
    131. Unsaturation Reactions Occur in Eukaryotesin the Middle of an Aliphatic Chain
  • 00:04
    132. Slide 34
  • 00:00
    133. Slide 35
  • 05:38
    134. Slide 34
  • 02:03
    135. Slide 35
  • 00:31
    136. Mammals Cannot Synthesize Most Polyunsaturated Fatty Acids
  • 00:06
    137. Slide 1
  • 00:00
    138. Focus on
  • 00:00
    139. Overview of Fatty Acid Metabolism
  • 00:00
    140. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 00:00
    141. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 00:01
    142. Quaternary structure of the E. coli BCCP (dimer)-BC(dimer) complex
  • 00:00
    143. Acetyl-CoA Carboxylase in Animals Is a Multifunctional Protein
  • 00:00
    144. The Activity of Acetyl-CoA Carboxylase Is Modulated by Phosphorylation and Dephosphorylation
  • 00:00
    145. Slide 9
  • 00:00
    146. Synthesis of Fatty Acids:
  • 00:00
    147. There are three principle sources of acetyl CoA:1.Amino acid degradation produces cytosolic acetyl CoA2.Fatty acid oxidation produces mitochondrial acetyl-CoA3.Glycolysis yields cytosolic pyruvate, which (after transport into the mitochondria) is conve
  • 00:00
    148. Slide 12
  • 00:00
    149. The citrate-malate-pyruvate shuttle
  • 00:00
    150. Fatty acid synthase
  • 00:00
    151. Slide 15
  • 00:00
    152. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    153. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    154. FAS II in yeast
  • 00:07
    155. Slide 19
  • 00:02
    156. Slide 20
  • 00:00
    157. Slide 19
  • 00:00
    158. FAS II in yeast
  • 00:00
    159. Slide 19
  • 00:00
    160. FAS II in yeast
  • 00:00
    161. Slide 19
  • 00:00
    162. FAS II in yeast
  • 00:00
    163. Slide 19
  • 00:00
    164. FAS II in yeast
  • 00:00
    165. Slide 19
  • 00:00
    166. FAS II in yeast
  • 00:00
    167. (Fatty Acyl Synthase II; FAS II)
  • 00:00
    168. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    169. Slide 15
  • 00:00
    170. Fatty acid synthase
  • 00:00
    171. The citrate-malate-pyruvate shuttle
  • 00:00
    172. Slide 12
  • 00:00
    173. There are three principle sources of acetyl CoA:1.Amino acid degradation produces cytosolic acetyl CoA2.Fatty acid oxidation produces mitochondrial acetyl-CoA3.Glycolysis yields cytosolic pyruvate, which (after transport into the mitochondria) is conve
  • 00:00
    174. Synthesis of Fatty Acids:
  • 00:00
    175. Slide 9
  • 00:00
    176. The Activity of Acetyl-CoA Carboxylase Is Modulated by Phosphorylation and Dephosphorylation
  • 00:01
    177. Acetyl-CoA Carboxylase in Animals Is a Multifunctional Protein
  • 00:00
    178. Quaternary structure of the E. coli BCCP (dimer)-BC(dimer) complex
  • 00:00
    179. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 01:09
    180. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 00:00
    181. Overview of Fatty Acid Metabolism
  • 00:00
    182. Focus on
  • 01:41
    183. Overview of Fatty Acid Metabolism
  • 00:07
    184. Synthesis of Fatty Acids: Production of malonyl-CoA is the initial and controlling step
  • 00:00
    185. Acetyl-CoA Carboxylase (ACC) Is Biotin-Dependent and Displays Ping-Pong Kinetics (In E. coli)
  • 00:00
    186. Quaternary structure of the E. coli BCCP (dimer)-BC(dimer) complex
  • 00:00
    187. Acetyl-CoA Carboxylase in Animals Is a Multifunctional Protein
  • 00:00
    188. The Activity of Acetyl-CoA Carboxylase Is Modulated by Phosphorylation and Dephosphorylation
  • 00:00
    189. Slide 9
  • 00:00
    190. Synthesis of Fatty Acids:
  • 00:00
    191. There are three principle sources of acetyl CoA:1.Amino acid degradation produces cytosolic acetyl CoA2.Fatty acid oxidation produces mitochondrial acetyl-CoA3.Glycolysis yields cytosolic pyruvate, which (after transport into the mitochondria) is conve
  • 00:17
    192. Slide 12
  • 00:00
    193. The citrate-malate-pyruvate shuttle
  • 00:03
    194. Fatty acid synthase
  • 00:00
    195. Slide 15
  • 01:07
    196. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:00
    197. Slide 15
  • 00:02
    198. Fatty acid synthase
  • 00:01
    199. The citrate-malate-pyruvate shuttle
  • 01:47
    200. Slide 12
  • 00:00
    201. The citrate-malate-pyruvate shuttle
  • 00:00
    202. Fatty acid synthase
  • 00:00
    203. Slide 15
  • 00:00
    204. Fatty Acid Synthase (Fatty Acyl Synthase I) in Animal
  • 00:01
    205. (Fatty Acyl Synthase II; FAS II)
  • 00:01
    206. FAS II in yeast
  • 00:00
    207. Slide 19
  • 00:00
    208. Slide 20
  • 00:00
    209. Slide 21
  • 00:00
    210. Slide 22
  • 00:00
    211. Slide 23
  • 00:00
    212. Slide 24
  • 00:00
    213. Slide 25
  • 00:00
    214. The Design Strategy for Fatty Acid Synthesis:Fatty acid chains are constructed by the addition of two-carbon units derived from acetyl-CoAThe acetate units are activated by carboxylation with CO2 to form malonyl-CoA (at the expense of ATP)The addition of
  • 00:00
    215. There Are Four Major Differences Between Fatty Acid Breakdown and Biosynthesis
  • 00:00
    216. Slide 28
  • 00:00
    217. C16 Fatty Acids May Undergo Elongation and Unsaturation
  • 00:00
    218. Slide 30
  • 00:01
    219. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:00
    220. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 00:01
    221. Unsaturation Reactions Occur in Eukaryotesin the Middle of an Aliphatic Chain
  • 00:00
    222. Slide 34
  • 00:00
    223. Slide 35
  • 00:46
    224. Mammals Cannot Synthesize Most Polyunsaturated Fatty Acids
  • 02:20
    225. Mammals Cannot Synthesize Most Polyunsaturated Fatty Acids
  • 00:55
    226. Arachidonic Acid (ω6; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 00:28
    227. Arachidonic Acid (ω6 ; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 08:09
    228. ω3 and ω6 – Essential Fatty Acids with Many Functions
  • 00:00
    229. ω3 and ω6─Essential Fatty Acids with Many Functions
  • 00:00
    230. ω3 and ω6 – Essential Fatty Acids with Many Functions
  • 00:01
    231. Arachidonic Acid (ω6 ; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 00:00
    232. ω3 and ω6 – Essential Fatty Acids with Many Functions
  • 00:00
    233. ω3 and ω6─Essential Fatty Acids with Many Functions
  • 00:00
    234. Regulation of Fatty Acid Synthesis and Fatty Acid Oxidation
  • 00:00
    235. How Are Complex Lipids Synthesized?
  • 00:00
    236. Regulation of Fatty Acid Synthesis and Fatty Acid Oxidation
  • 00:00
    237. ω3 and ω6─Essential Fatty Acids with Many Functions
  • 00:00
    238. ω3 and ω6 – Essential Fatty Acids with Many Functions
  • 00:00
    239. Arachidonic Acid (ω6 ; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 00:00
    240. Arachidonic Acid (ω6; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 00:00
    241. Mammals Cannot Synthesize Most Polyunsaturated Fatty Acids
  • 00:00
    242. Slide 35
  • 00:00
    243. Slide 34
  • 00:00
    244. Unsaturation Reactions Occur in Eukaryotesin the Middle of an Aliphatic Chain
  • 00:00
    245. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 00:00
    246. Elongation of Fatty Acids in Endoplasmic Reticulum
  • 00:00
    247. Elongation of Fatty Acids in Mitochondria Is Initiated by the Thiolase Reaction
  • 00:00
    248. Unsaturation Reactions Occur in Eukaryotesin the Middle of an Aliphatic Chain
  • 00:00
    249. Slide 34
  • 00:01
    250. Slide 35
  • 00:00
    251. Mammals Cannot Synthesize Most Polyunsaturated Fatty Acids
  • 00:00
    252. Arachidonic Acid (ω6; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 00:00
    253. Arachidonic Acid (ω6 ; 20:4) Is Synthesized from Linoleic AcidBy Mammals
  • 01:16
    254. ω3 and ω6 – Essential Fatty Acids with Many Functions
  • 01:10
    255. ω3 and ω6─Essential Fatty Acids with Many Functions
  • 04:32
    256. Regulation of Fatty Acid Synthesis and Fatty Acid Oxidation
  • 00:05
    257. How Are Complex Lipids Synthesized?
  • 01:51
    258. Lipids Synthesis
  • 02:57
    259. How Are Complex Lipids Synthesized?
  • 02:36
    260. Page 808
  • 01:22
    261. How Are Complex Lipids Synthesized?
  • 00:00
    262. Page 808
  • 00:26
    263. Slide 46
  • 00:00
    264. Page 808
  • 00:12
    265. How Are Complex Lipids Synthesized?
  • 00:00
    266. Page 808
  • 00:28
    267. Slide 46
  • 00:00
    268. Page 808
  • 00:25
    269. How Are Complex Lipids Synthesized?
  • 00:01
    270. Page 808
  • 00:02
    271. Slide 46
  • 00:03
    272. Page 808
  • 00:02
    273. Slide 46
  • 00:15
    274. Page 808
  • 00:57
    275. Slide 46
  • 00:20
    276. Page 808
  • 00:12
    277. Slide 46
  • 01:01
    278. Page 808
  • 00:50
    279. Page 808
  • 00:00
    280. Page 808
  • 00:07
    281. Slide 46
  • 00:00
    282. Page 808
  • 00:38
    283. Page 808
  • 02:27
    284. Page 810
  • 00:01
    285. Page 808
  • 00:00
    286. Page 810
  • 00:01
    287. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:00
    288. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 00:34
    289. Page 812
  • 00:34
    290. Page 811
  • 00:00
    291. Page 812
  • 00:00
    292. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 00:00
    293. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:21
    294. Page 810
  • 00:00
    295. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:00
    296. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 00:00
    297. Page 812
  • 03:50
    298. Page 811
  • 00:00
    299. Ether glycerophospholipids: plasmalogen & PAF
  • 00:01
    300. Page 811
  • 00:00
    301. Page 812
  • 00:00
    302. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 03:35
    303. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:32
    304. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 00:00
    305. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:25
    306. Page 810
  • 02:02
    307. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions (New in 6th edition, 2017)
  • 00:01
    308. Lipins – Phosphatases Essential for Triglyceride Synthesis and Other Functions(New in 6th edition, 2017)
  • 00:00
    309. Page 812
  • 00:00
    310. Page 811
  • 00:56
    311. Ether glycerophospholipids: plasmalogen & PAF
  • 00:02
    312. Page 813
  • 00:31
    313. Ether glycerophospholipids: plasmalogen & PAF
  • 00:17
    314. Page 813
  • 00:54
    315. Page 813 & 814
  • 00:12
    316. Page 814
  • 00:19
    317. Page 813 & 814
  • 00:01
    318. Page 814
  • 00:03
    319. Slide 58
  • 02:43
    320. Slide 59
  • 00:21
    321. Slide 60
  • 00:30
    322. Slide 61
  • 00:00
    323. Slide 60
  • 00:01
    324. Slide 61
  • 00:09
    325. Page 815
  • 00:00
    326. Slide 61
  • 00:00
    327. Slide 60
  • 00:11
    328. Slide 59
  • 00:00
    329. Slide 60
  • 00:00
    330. Slide 61
  • 00:34
    331. Page 815
  • 00:00
    332. Slide 61
  • 00:00
    333. Slide 60
  • 00:48
    334. Slide 59
  • 00:00
    335. Slide 60
  • 00:00
    336. Slide 61
  • 00:13
    337. Page 815
  • 02:38
    338. Page 816
  • 01:12
    339. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    340. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:50
    341. Page 818
  • 00:01
    342. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:02
    343. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    344. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    345. Page 818
  • 00:00
    346. Page 818
  • 01:58
    347. Prostaglandins Are Formed from Arachidonate by Oxidation and Cyclization
  • 00:00
    348. Page 818
  • 00:26
    349. Page 818
  • 00:01
    350. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:43
    351. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    352. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    353. Page 818
  • 02:57
    354. Page 818
  • 00:01
    355. Page 818
  • 00:00
    356. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:15
    357. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    358. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    359. Page 818
  • 00:00
    360. Page 818
  • 00:31
    361. Prostaglandins Are Formed from Arachidonate by Oxidation and Cyclization
  • 00:00
    362. Page 818
  • 00:00
    363. Page 818
  • 00:00
    364. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:42
    365. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 01:31
    366. How Are Eicosanoids Synthesized, and What Are Their Functions?
  • 00:00
    367. Page 818
  • 00:00
    368. Page 818
  • 00:01
    369. Prostaglandins Are Formed from Arachidonate by Oxidation and Cyclization
  • 00:04
    370. Eicosanoids
  • 03:12
    371. Prostaglandin
  • 02:29
    372. Lipoxins – Anti-Inflammatory Eicosanoid Products of Transcellular Metabolism (New in 6th edition, 2017)
  • 00:36
    373. Lipoxins – Anti-Inflammatory Eicosanoid Products of Transcellular Metabolism
  • 00:05
    374. Aspirin and Other NSAIDs (Nonsteroidal Anti-inflammatory Drugs) Block Synthesis of Prostaglandins
  • 00:02
    375. The Molecular Basis for the Action of Nonsteroidal Anti-Inflammatory Drugs
  • 02:09
    376. Aspirin and Other NSAIDs (Nonsteroidal Anti-inflammatory Drugs) Block Synthesis of Prostaglandins
  • 00:03
    377. The Molecular Basis for the Action of Nonsteroidal Anti-Inflammatory Drugs
  • 00:00
    378. Why Do the New “COX-2 Inhibitors” Bind to (and Inhibit)COX-2 But Not COX-1?
附件
長度: 2:36:24, 發表時間 : 2016-05-06 12:53
觀看次數 : 2,877
附件
討論功能僅開放給課程成員,請先加入課程
國育
為甚麼要找最新文件才找的到,但點進去課程卻找不到?
2016-05-12 1 樓
筆記功能僅開放給課程成員,請先加入課程
Prev
2016 CH24 Lipid biosynthesis
Next
ch25