登入首頁
收藏 0
返回課程
chapter31lch104
  • 生物化學
  • 單元一:Carbohydrate 醣類 (chap 7)
  • B_BC_chap7 上課講義
  • Chap 7 part 1 先聽聽老師上課影音
  • [重點一] 醣類的分類
  • <外部影片> Carbohydrates- naming and classification
  • [重點二] 醣類的掌形中心
  • <外部影片> TEDed 亂入一下,幫『有機化學課』講解一下 chiral 分子的發現與特性喔!
  • <外部影片> 花五分鐘聽一下可汗學院的課程,介紹什麼是『掌性』 Chirality
  • [重點三] 醣類的 D- L- 構型以及光學異構物
  • <外部影片> 搞清楚這些名詞的意思:Stereoisomers, enantiomers, and chirality centers
  • <外部影片> Carbohydrates - absolute configuration, epimers, common names
  • [重點四] 醣類的環狀構型
  • <外部影片> Fischer to Haworth and Chair for Glucose and Fructose (Vid 5 of 5)
  • Chap 7 Part 2 準備好了?聽一下這個部分林翰佳老師怎麼說?
  • [重點五] 醣類的還原能力
  • [重點六] 多醣類
  • Chap 7 Part 3 最後一段,堅持一下!翰佳老師影音課程
  • [重點七] 醣蛋白 glycoprotein 以及肽聚醣 peptidioglycan
  • [重點八] Sugar code 以及凝集素 Lectin (有點生化又有一點細胞學)
  • <維基百科> 凝集素
  • <生技應用> 凝集素可以去哪裡買?有什麼應用呢?
  • <維基百科> Selectin 也是一種凝集素,與動物細胞的分子辨識有關!
  • <外部影片> 有點搞笑的黏土動畫 Leukocyte: Tumbling to Adhering
  • Lipid 酯質 (chap 8)
  • 2015 Ch 8 Lipids
  • [上課影音]生物化學 Chap 8
  • Amino acids 胺基酸 (chap 4)
  • amino acids-2015-10-01
  • amino acids-2015-10-01
  • Proteins 蛋白質 (chap 5)
  • chapter5-2015-10-07
  • chapter5-2015-10-07
  • Protein structure chapter 6
  • 20151015
  • protein-2-2015-10-15-16
  • protein-2-2015-10-15-16
  • Ch9
  • Ch 9Membranes & Membrane Transport
  • Ch 9Membranes & Membrane Transport
  • Ch10
  • CH10
  • 2013CH10
  • Ch11
  • CH11
  • 2015CH11-1
  • 2015CH11-2
  • C12
  • 2015CH12
  • 2015CH12
  • ch28
  • CH28
  • CH28
  • CH29
  • Ch. 29 Transcription
  • Ch. 29 Transcription
  • Ch 29 Transcription
  • CH30
  • chapter30 lch 104
  • chapter30 lch 104
  • CH31
  • chapter31lch104
  • chapter31lch104
  • 索引
  • 重點
  • 討論
  • 筆記
長度: 01:28:04, 發表時間 : 2015-12-31 17:06
觀看次數 : 2,017
  • 00:43
    1. DnaK (E. coli Hsp70) consists of two domains: 44-kD N-terminal ATP-binding domain 18-kD central domain that binds peptides with exposed hydrophobic regions
  • 01:37
    2. DnaK mechanism of action
  • 01:02
    3. DnaK mechanism of action
  • 01:06
    4. Slide 16
  • 02:26
    5. Hsp60 Chaperonin
  • 00:06
    6. E. coli Hsp60 Chaperonin GroES-GroEL
  • 00:03
    7. Hsp60 Chaperonin
  • 00:02
    8. E. coli Hsp60 Chaperonin GroES-GroEL
  • 00:10
    9. Figure 31.3 (a) Structure and overall dimensions of GroES-GroEL. (b) Section through the center of the complex to reveal the central cavity
  • 00:03
    10. GroES-GroEL mechanism of action
  • 00:00
    11. Figure 31.3 (a) Structure and overall dimensions of GroES-GroEL. (b) Section through the center of the complex to reveal the central cavity
  • 00:02
    12. E. coli Hsp60 Chaperonin GroES-GroEL
  • 00:01
    13. Hsp60 Chaperonin
  • 01:56
    14. E. coli Hsp60 Chaperonin GroES-GroEL
  • 01:53
    15. Figure 31.3 (a) Structure and overall dimensions of GroES-GroEL. (b) Section through the center of the complex to reveal the central cavity
  • 00:24
    16. GroES-GroEL mechanism of action
  • 00:20
    17. Slide 21
  • 00:20
    18. GroES-GroEL mechanism of action
  • 00:11
    19. Slide 21
  • 00:00
    20. The eukaryotic group II chaperonin
  • 00:00
    21. Slide 21
  • 00:21
    22. GroES-GroEL mechanism of action
  • 00:36
    23. Slide 21
  • 00:23
    24. GroES-GroEL mechanism of action
  • 00:35
    25. Slide 21
  • 00:04
    26. GroES-GroEL mechanism of action
  • 00:01
    27. Slide 21
  • 01:48
    28. The eukaryotic group II chaperonin
  • 00:22
    29. Group II chaperonin
  • 00:25
    30. Prefoldin structure
  • 02:03
    31. Figure 31.3 (d)
  • 02:37
    32. The eukaryotic Hsp90 Chaperones Act on Proteins of Signal Transduction Pathways
  • 01:21
    33. 31.2 How Are Proteins Processed Following Translation?
  • 02:27
    34. Proteolytic cleavage is the most common form of post-translational modification
  • 02:04
    35. Slide 29
  • 01:20
    36. 31.3 How Do Proteins Find Their Proper Place in the Cell?
  • 01:46
    37. Proteins are delivered to their proper cell compartment by translocation
  • 02:27
    38. Proteins to be translocated are made as preproteins containing signal sequencesPreprotein are maintained in a loosely folded, translocation-competent conformation through interaction with chaperonesEukaryotic chaperones within membrane compartment are usu
  • 01:21
    39. The four compartments in Gram (-) bacteria
  • 02:24
    40. Prokaryotic proteins destined for translocation are synthesized as preproteins
  • 01:20
    41. Eukaryotic Proteins Are Delivered to Locations by Protein Sorting and Translocation
  • 01:05
    42. Recognition by the ER:
  • 02:02
    43. Synthesis of Secretory Proteins and Many Membrane Proteins is Coupled to Translocation
  • 01:28
    44. Interaction between the RNC-SRP and the SR Delivers the RNC to the membrane
  • 01:33
    45. Ribosome and Translocon Form a Common Conduit for Nascent Protein Transfer
  • 01:13
    46. After entering ER, the signal peptide is clipped off by membrane-bound signal peptidase (leader peptidase)Secretory proteins enter ER completely Membrane proteins have stop-transfer sequences that arrest the passage across ER Stop-transfer: 20-residue st
  • 00:37
    47. Slide 41
  • 00:26
    48. Translocation of membrane protein
  • 00:33
    49. Figure 31.5 Synthesis of a eukaryotic secretory protein and its translocation into the ER
  • 01:11
    50. Other post-translational modifications occurs, glycosylationMammalian translocon: Sec61 complex (a, b, g) + TRAMSec61 complex forms the channel; dynamic pore size, 0.6 – 6 nmTRAM inserts the nascent integrate membrane proteins into membrane.
  • 00:59
    51. Retrograde Translocation Prevents Secretion of Damaged Proteins and Recycles Old ER Proteins
  • 00:31
    52. Mitochondrial Protein Import
  • 00:24
    53. Mitochondrial Protein Import
  • 01:26
    54. Mitochondrial Protein Import
  • 00:18
    55. Mitochondrial Presequences Contain Positively Charged Amphipathic α-Helices
  • 01:28
    56. Translocation of Mitochondrial Preproteins Involves Distinct Translocons
  • 01:22
    57. Figure 31.7 All mitochondrial proteins must interact with the outer mitochondrial membrane (TOM). They can be passed to the SAM complex or enter the intermembrane space.
  • 02:47
    58. 31.4 How Does Protein Degradation Regulate Cellular Levels of Specific Proteins?
  • 00:54
    59. Eukaryotic proteins are targeted for proteasome destruction by ubiquitination
  • 01:27
    60. The three proteins involved in ubiquitination E1, E2, and E3
  • 01:00
    61. Slide 54
  • 00:54
    62. Enzymatic Reactions in the Ligation of Ubiquitin to Proteins
  • 00:51
    63. Slide 56
  • 00:57
    64. E3 recognizes and selects protein for degradation
  • 01:05
    65. E3 recognizing N-terminal amino acid
  • 00:34
    66. Figure 31.9 Arginyl-tRNAArg:protein transferase transfers Arg to the free α-NH2 of proteins with Asp or Glu N-termini. Arg-tRNAArg:protein transferase serves as part of the protein degradation recognition system.
  • 00:56
    67. E3 recognizing N-terminal amino acid
  • 00:02
    68. Figure 31.9 Arginyl-tRNAArg:protein transferase transfers Arg to the free α-NH2 of proteins with Asp or Glu N-termini. Arg-tRNAArg:protein transferase serves as part of the protein degradation recognition system.
  • 02:18
    69. Proteins Targeted for Destruction Are Degraded by Proteasomes
  • 00:50
    70. Thermoplasma acidophilum 20S proteasome
  • 02:03
    71. Eukaryotic Cells Contain Two Forms of Proteasomes
  • 00:42
    72. The 26S Proteasome is Composed of a 20S Proteasome Plus 19S Regulator Caps
  • 01:25
    73. 19S regulator: lid + base
  • 01:41
    74. The Ubiquitin-ProteasomeDegradation Pathway
  • 01:09
    75. Small Ubiquitin-Like Protein Modifiers Are Post-Translational Regulators
  • 01:45
    76. The Mechanism of Reversible Sumoylation
  • 01:20
    77. The Molecular Consequences of Sumoylation
  • 01:19
    78. Ubc9 is the only known SUMO E2 enzyme, which recognize yKXD/E The recognition site should be in a relative unstructured part of a target protein or in an extended loopSumoylation is involved in transcriptional regulation, chromosome organization, nuclear
  • 00:32
    79. The Structure of an E2 Enzyme:Target Protein Complex
  • 01:10
    80. HtrA Proteases Also Function in Protein Quality Control
  • 01:35
    81. Prokaryotic HtrA proteases act as chaperones at low temperatures (20°C), but as temperature rises they become a protease to remove misfolded or unfolded proteins DegP (from E. coli) is the best characterized HtrA proteaseDegP is localized in periplasm to
  • 01:27
    82. Slide 73
  • 01:21
    83. Slide 74
  • 00:00
    84. Slide 73
  • 00:37
    85. Slide 74
附件
長度: 01:28:04, 發表時間 : 2015-12-31 17:06
觀看次數 : 2,017
附件
討論功能僅開放給課程成員,請先加入課程
筆記功能僅開放給課程成員,請先加入課程
Prev
chapter31lch104